This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Collaborative Policy Administration

Weili Han, Member, IEEE, Zheran Fang, Laurence T. Yang, Member, IEEE, Gang Pan, Member, IEEE,
and Zhaohui Wu, Senior Member, IEEE

Abstract—Policy based management is a very effective method to protect sensitive information. However, the overclaim of privileges
is widespread in emerging applications, including mobile applications and social network services, because the applications’ users
involved in policy administration have little knowledge of policy based management. The overclaim can be leveraged by malicious
applications, then lead to serious privacy leakages and financial loss. To resolve this issue, this paper proposes a novel policy
administration mechanism, referred to as Collaborative Policy Administration (CPA for short), to simplify the policy administration.
In CPA, a policy administrator can refer to other similar policies to set up their own policies to protect privacy and other sensitive
information. This paper formally defines CPA, and proposes its enforcement framework. Furthermore, in order to obtain similar policies
more effectively, which is the key step of CPA, a text mining based similarity measure method is presented. We evaluate CPA with
the data of Android applications, and demonstrate that the text mining based similarity measure method is more effective in obtaining
similar policies than the previous category based method.
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1 INTRODUCTION

T HE method of policy based management is widely
used to manage complex and large scale network
systems [1] [2] [3] [4]. The traditional framework of
policy based management consists of four core com-
ponents [5]: PDP (Policy Decision Point), PEP (Policy
Enforcement Point), PAP (Policy Administration Point)
and PR (Policy Repository). A well-trained policy admin-
istrator or group will specify, verify policies in PAP, and
deploy the policies in PR. After a system runs, PDP will
retrieve applicable policies from PR, and make decisions.
PEP takes charge of the decision, such as satisfying the
request where a subject wants to open a file (authorization
action), or launching a logger to record system context
(obligation action).

The overclaim of privileges, where a not well-trained
administrator assigns more privileges than those are
required of a subject, is a increasingly serious prob-
lem, especially when the method of policy based man-
agement is applied to emerging application scenarios,
such as mobile applications [6] [7] [8] [9] and social
network services [10]. For instance, during the process
of Android application development, three roles are
usually involved in the policy administration: Application
Developers declare which permissions the application
will request; Application Marketers verify whether the
application is legitimate or not by an automatic tool;
Application Users decide whether to approve the permis-
sion requests. These three roles are usually performed
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by those who are not well-trained in policy based man-
agement. That is, the developers usually declare more
permissions than necessary because they are inclined to
make the development of applications easier, or even
misunderstand technical documents [9] [11]; the mar-
keters usually tend to allow more applications regardless
of the malicious permission requests; and the application
users may not know what the requested permissions
mean, thus approving all requests because they are eager
to use the application. The same issue exists in social
network services, where a user is asked to grant access
to private data to third-party applications [12].

This challenge to policy administration is increas-
ing serious due to the explosion of these applications.
Among all smart phones shipped during the second
quarter of 2012, Android OS smart phones had the
largest global market share (68.1%) [13]. Furthermore,
social network services have become one of the most
popular web applications in the world [10]. For example,
in April 2012, Twitter, an online microblogging service
created in March 2006, announced that it commanded
more than 140 million active users, and saw 340 million
Tweets a day [14]. Although IETF proposed the protocol
of OAuth 2.0 [15], the policy administration is still a
serious problem in the policy based management of
these emerging applications [12]. As a result, we should
strengthen the policy administration mechanism in these
application scenarios.

This  paper  proposes  Collaborative  Policy
Administration (CPA for short). The essential idea
of CPA is that applications with similar functionalities
shall have similar policies which will be specified
and deployed. Thus, to specify or verify policies, CPA
will examine policies already specified by other similar
applications and perform collaborative recommendation.
The degree of similarity will be calculated by predefined
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algorithms, which cloud be a category based algorithm
and a text mining based algorithm, etc.
The main contributions of this paper are as follows:

o We propose a novel method - collaborative policy
administration, to help not well-trained users, even
novices to specify and verify policies. We define
the formal model of CPA. In this model, two main
functions in policy administration are defined based
on similarity measure methods, which will select
similar policies as a refinement basis to assist ad-
ministrators to design or verify their target policies.

o We propose a text mining based similarity mea-
sure method to help policy administrators to obtain
similar policies. According to the evaluation, the
proposed method is more effective than the category
based similarity measure method, which is more
widely used in other literatures [7] [12].

o We present an enforcement framework, and imple-
ment a prototype of CPA. The framework supports
two types of user interfaces, and provides functions
of collaborative policy design and collaborative pol-
icy verification.

The rest of the paper is organized as follows: Section 2
analyzes the trust model in mobile applications and
social network services, then presents them as typical
scenarios; Section 3 formally defines CPA; Section 4 in-
troduces an enforcement framework; Section 5 evaluates
the effectiveness of CPA by experiments; Section 6 dis-
cusses the rest key issues in CPA; Section 7 investigates
the related work; and Section 8 concludes the paper and
introduces our future work.

2 BACKGROUND AND MOTIVATION

2.1 No Trusted Administration Point in Emerging
Applications

In the traditional administration model [3], a profession-
al expert or group will take charge of the policy admin-
istration, whose functions include policy design, policy
verification, and policy deployment. When a system is
being deployed, the expert or group will analyze what
are the critical resources, then model them, and specify
the management and security policies. These policies
could be from the routines of organization management,
or from the result of face-to-face discussions or meet-
ings. After the policy design, some formal analysis tools
could be applied to verify the policies. Even after the
policy deployment, log-based analysis tools can help the
expert or group to verify the designed policies: explore
vulnerabilities, fix policies, and re-deploy them.
However, the emerging applications, especially mobile
applications and social network services, challenge the
existing trust model in the policy administration. In
these emerging applications, common users, including
software developers and end users, who do not possess
the professional knowledge of policy based managemen-
t, must specify or verify policies. The developer of a
third-party application must request the privileges to be

used by the application. When the developer writes the
manifest files, he or she might overclaim privileges [9]
[11]. The developer may not know what is at risk in
detail if an application requests such privileges. As an
end user of the third-party application, he or she must
determine whether the requests for the privileges are
legitimate. The task is very tough because the majority
of end users do not know the risk of the approval in
detail. Usually, the end user will approve all requests
from third-party applications, because he or she wants
to run the applications, thus falling into the traps of
malicious applications.

As the second feature of the changing trust model, the
involved parties in the policy administration could have
the conflict of interest. A developer is inclined to request
more privileges because this enables the developer to
run his or her application with less privilege restrictions.
However, an end user of the application is inclined to
approve the fewest privileges possible to run the appli-
cation, because more privileges expose more resources,
thus lead to more risks, e.g., the leakage of privacy.

The third feature of the changing trust model is that a
supervisor could verify the policy requests. The strength-
s of different supervisors are totally different. It depends
on the strategies of the applications’” distribution. For
example, because the strength of Google Play Store is
relatively weak, Android developers can publish many
applications rapidly and easily. But Apple App Store
deploys a stricter reviewing strategy. Thus the speed of
application publishing in App Store is usually slow [16].

As a result of the changing trust model, overclaim of
privileges is widespread in these emerging applications.
This breaks the basic security principle: Principle of
Least Privilege [17]. Although IETF proposed the open
authorization protocol [15], it does not provide a policy
administration model under the changing trust model.
Thus, the changing trust model calls for more novel
mechanisms to strengthen the policy administration.

2.2 Motivated Scenarios
2.2.1 Android Applications

In the Android security framework [6] [18] [19]
[20] [21] [22], a developer rather than a professional
policy administrator must set which permissions an
application should request. And an end user of the appli-
cation rather than a policy administrator must determine
whether the requested permissions are legitimate for his
or her mobile device. Due to the openness of the Android
security framework, hundreds of millions of developers
and users are involved. Without tools” support, the de-
velopers could not fully understand, or might even mis-
understand the description of the requested permissions.
As a result, overclaimed permissions are widespread
in Android applications [11]. On the other hand, the
end users usually approve all requested permissions
due to the lack of knowledge of policy administration.
The supervisors, application marketers, usually spend
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little effort on checking the applications. Thus, many
applications with malicious behaviors can be uploaded
to markets, and spread to lots of Android devices.

CPA will provide two functions to help application
developers, marketers, and end users of Android: col-
laborative policy design and collaborative policy verifi-
cation. Collaborative policy design assists the applica-
tion developers in declaring permissions to achieve the
applications’ functionalities, observing the Principle of
Least Privilege while ensuring the normal functionalities
of the applications. On the other hand, collaborative
policy verification helps the end users identify malicious
permission requests, thus keeps the users from privacy
leakage or financial losses. Moreover, for the marketers,
collaborative policy verification mitigates the difficulty
of filtering malicious applications.

2.2.2 Social Network Services

In social network services, third-party web-based ap-
plications could request sensitive information of end
users. The problem is similar to the issue in the Android
system. The differences between Android applications
and social network services are as follows: First, the
Android security framework only allows the end user to
approve or deny all request permissions, but the social
network services allow the end user to approve sensitive
requests one by one. Second, the social network services
can follow the protocol of OAuth (2.0), but the Android
security framework is not standardized.

Literature [12] proposed several recommendation
models for OAuth. This mechanism is similar to CPA.
However, by leveraging CPA, the developer as well as
the end user can benefit. The developer can determine
which sensitive requests can be set according to other
similar policies. As a result, he or she can develop
securer and more acceptable applications for end users.

3 CPA: DEFINITIONS

The proposed collaborative policy administration in-
cludes two main stages: collaborative policy design and
collaborative policy verification. We, therefore, formally
define the CPA model as follows:
DEFINITION 1: Collaborative Policy Administra-
tion Model:
CPA := {Admins, CPDM, CPVM},

Here, Admins refers to all involved policy adminis-
trators, including, e.g., developers, marketers, and end
users in the Android framework.

We define CPDM as follows:

DEFINITION 2: Collaborative Policy Design Mod-
el:

CPDM :=

{PBhistory, SimFunc, SUBJS, RefFunc, A, PSyr}

A policy administrator € Admins can obtain a refined
policy set C PS,.; according to a refinement function
€ RefFunc, which is a refinement [3] driven by history

data. Thus, it is very different from the traditional policy
refinement methods [3], which are driven by a set of
refinement rules or templates.

In DEFINITION 2, PBystory refers to a policy base
which contains a number of policies previously created
both by administrator himself/herself and others. We
abstractly define the content of PBj;si0ry as follows:

._ oSUBJSxPERMS
PBhistory =2

Here, SUBJS refers to the subjects in a system. E.g., in
the Android system, all applications belong to SUBJS.
PERMS refers to all available permissions. E.g., there are
130 permissions in the Android system now [23].

Next, in DEFINITION 2, SimFunc selects similar sub-
jects, then output their policies according to the subject’s
attributes as the similar policies. E.g., when a subject has
a category attribute, all other subjects in the category can
be viewed as similar applications, e.g., 90% of Minimal
Acceptable Rate in Appendix A.l in the supplemental
material. Formally,

SimFunc : SUBJS X PBpisiory —+ PSsimitar

Here, PSsimiier refers to all policies of the similar
subjects, as is described in the previous part.

In DEFINITION 2, RefFunc refers to the refinement
functions, each of which will output a policy set accord-
ing to the attributes of a subject € SUBJS, its similar
policies € PSsimitar, and 6 € A, which may be a number,
is a parameter of the function. Formally,

RefFunc : SUBJS X PSgimitar X A — PSyey

Here, PS,.s is a subset of SUBJS x PERMS. Note that,
each subject in the output PS,.s is equal to the input
parameter of the subject € SUBJS.

And we define CPVM as follows:

DEFINITION 3: Collaborative Policy Verification
Model:

CPVM =

{PBhistory, SimFunc, SUBJS, VeriFunc, VeriResult}

A policy administrator € Admins can obtain a verifica-
tion result € VeriResult for a target policy set € PSiarget,
which contains all polices assigned to a target subject €
SUBJS, according to a verification function € VeriFunc.

In DEFINITION 3, SUBJS refers to the target subjects
which will be verified. According to a target subject, we
can obtain a target policy set PSiurgc:, Which is also a
subset of SUBJS x PERMS. Note that, there is only one
subject in PSiarget-

Finally, in DEFINITION 3, VeriFunc refers to the ver-
ification functions, each of which will verify the target
policy set, and provide a verification result. The result
includes a simple conclusion VeriResult, e.g., whether
the target policy set is suitable or not, or a vector of
percentages, where each value represents how much
percentage a permission in the target policy set occupies
in the similar policies. We define VeriFunc as follows:

VeriFunc : SUBJS X PSgimiiar — VeriResult
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Fig. 1. Enforcement framework of CPA

4 CPA: ENFORCEMENT FRAMEWORK
4.1 Overview

As is shown in Figure 1, a policy administrator can
leverage the framework to administrate policies via a
phone, web browser, or development tool. In Figure 1,
the direction of arrows is the direction of key data flows.
The history policy base and similarity measure methods
are two key components in the enforcement framework.
To enforce CPA, the administrator should prepare a
sufficient number of policies at first.

Furthermore, collaborative policy design and collab-
orative policy verification are the two key functions
provided by the framework, according to the definitions
described in Section 3. These two functions depend on
the history policy base and similarity measure methods.
After obtaining the similar policies, the two functions
call a refinement algorithm and a verification algorithm
respectively.

Finally, collaborative policy design and collaborative
policy verification will display the results to the admin-
istrator on various user interfaces, e.g., a phone, web
browser, or development tool.

4.2 Key Algorithms
To enforce CPA, three key algorithms, similar policies

algorithms, refinement algorithm, and verification algo-
rithm, are proposed as follows:

4.2.1 Similar Policies Algorithms

Each similar policies algorithm obtains a similar policy
set according to an input subject. For each policy in the
HPB, each similar policies algorithm determines whether

Algorithm 1 Obtain Similar Policies Based on Category

Input:

subjectc SUBJS

HPB S Pthstm"y
Output:

simpolicies € PSsimitar

for all policy € HPB do
if policy.subject.category == subject.category then
simpolicies.add(policy)
end if

end for

its subject is similar to the required subject. If so, add it
to the similar policy set. There are many functions to
judge the similarity such as checking the category of a
subject, as described in Algorithm 1, or even friends’
recommendation and manual selection.

The time complexity of Algorithm 1 is O(n), where n
refers to the number of policies in HPB. An index based
on subjects in HPB can optimize the time complexity of
Algorithm 1.

Furthermore, we propose a new method based on the
text mining technique to obtain similar policy sets of an
application in the Android framework. This new method
leverages the description of a target application to find
similar applications, then adds the requested permis-
sions of the similar applications to the similar policy
set of the target application. A TF-IDF [24] method is
employed to create key words of application description,
and scores will be generated according to the key words.
Finally, the new method selects a pre-defined number
(threshold) of applications according to the scores, and
adds the selected applications’ policy configurations to
the similar policy set. Algorithm 2 shows our proposed
similarity measure method in detail.

Algorithm 2 Obtain Similar Policies Based on Text Min-
ing Method
Input:
subjecte SUBJS
HPB € PBhistnTy
Output:
simpolicies € PSgimitar

initialize()
query<—parse(subject.description)
for all subject € HPB do
doc«—subject.description
score< axbx >
termequery
if score>simSubjs[simcountThreshold].score then
simSubjs.removeLast()
simSubjs.insertInDescendingOrderByScore(subject)
end if
end for
for all subject € simSubjs do
simpolicies.add(subject.permissions)
end for

return simpolicies

(cxdxexf)(doc, term)
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In Algorithm 2, the initialize function involves declar-
ing the simpolicies, assigning 0 to the score of every
element in simpolicies and building the index for all
application description from HPB if the index files are
not available. The parse function tokenizes the descrip-
tion of the subject and returns a query object which is
ready for searching. The statements inside the for loop
are composed of a typical text mining procedure based
on TF-IDF [24]. This procedure iterates on all subjects
in the HPB. We execute the procedure with Apache
Lucene [25]. a stands for corrd(query, doc), which is the
score factor based on how many of the query terms are
found in the doc. b stands for queryNorm(query), which
is the normalizing factor used to make scores between
queries comparable. For each term in the query, c stands
for tf(termedoc), which is the term’s frequency in doc.
d stands for idf(term)?, which is the inverse document
frequency of term. e stands for term.getBoost(), which is
a search time boost of term in the query. f stands for
norm(term, doc), which is a few (indexing time) boost
and length factors. score is calculated based on 4, b, c,
d, e, and f, as is shown in Algorithm 2. simcountThreshold
refers to the threshold of similar subjects. When the score
is higher than the score of the simcountThresholdth item in
the similar subjects (simSubjs), the subject will be added
into simSubjs in descending order by score. Finally, all
policies of each subject in simSubjs will be added to
simpolicies.

The time complexity of Algorithm 2 might be O(n),
where n refers to the number of subjects in HPB. How-
ever, each iteration of Algorithm 2 is heavy, because the
algorithm leverages the algorithm of TF-IDF to generate
the scores.

4.2.2 Refinement Algorithm

Algorithm 3 Collaborative Policy Refinement

Input:

subject € SUBJS

simpolicies € PSsimitar

0 € A, it is a number here, e.g., 0.9
Output:

refpolicies € PS,;

for all policy € simpolicies do
count[policy.permission]++
end for
for all permission € PERMS do
if count[permission]/simpolicies.size> § then
policy.subject <— subject
policy.permission < permission
refpolicies.add(policy)
end if

end for

Algorithm 3 describes how to refine policies according
to a parameter J, which is a number here. The time
complexity of Algorithm 3 is O(n), where n refers to the
number of policies in simpolicies.

4.2.3 \Verification Algorithm

Algorithm 4 Collaborative Policy Verification

Input:
subject € SUBJS
simpolicies € PSgimitar
Output:
verires € VeriResult

for all policy € simpolicies do
count[policy.permission]++

end for

targetpolicies < Vpe HPB: p.subject = subject

for all tpolicy € targetpolicies do
verires[tpolicy.permission]<—

count[tpolicy.permission]/simpolicies.size
end for

Algorithm 4 provides a quantified measure between
the target policies and similar policies. Usually, the time
complexity of Algorithm 4 is O(n), where n refers to
the size of simpolicies, because the size of simpolicies
is usually larger than the size of tfargetpolicies, and the
step to fetch targetpolicies can be optimized by using an
index of subjects in HPB. The final output is a vector of
percentages, each of which means how much percentage
the permission of target policy occupies in the similar
policies. To simplify the final result, we can design an
aggregation algorithm to obtain a single number rather
than a vector.

5 CPA: EVALUATION
5.1

To evaluate the effectiveness of CPA, we propose
Permission Configuration Risk Index (PCRI), which can
show how risky a measured application is. The essence
of PCRI is that the more warning and dangerous high-
lighted permissions an application requests, the more
risky the application is. The PCRI of an application is
calculated based on the usage percentage and the critical
level [7] of each permission the application requests.
Here, only two levels, critical and non-critical, are used
in PCRI. As a result, this proposed index can simplify
the view of experiment results by integrating of the
verification results.

During the calculation of PCRI, we first classify the
requested permissions of an application by using warn-
ing percentage (P,) and dangerous percentage (Fy),
e.g., 80% and 50% respectively in Appendix A.1 in the
supplemental material, which are preset by the policy
administrators. If the usage percentage of a requested
permission (F,) is higher than the warning percentage,
the permission is a safe permission; if the percentage
of a requested permission falls between the warning
percentage and dangerous percentage, the permission is
a warning permission; if the percentage of a permission
falls below the dangerous percentage, the permission is
a dangerous permission.

Permission Configuration Risk Index
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TABLE 1
The calculation rules of PRI, A is a parameter vector of
the following formulas

| Critical Permission [ Non-critical Permission

. P, P, P, P,
Warning a X Pu—Py as X Pu—Py
P,—P, Py—P,

Dangerous as X —B a4y X —B

Second, different types of permissions will contribute
differently to the calculation of PCRI. After investi-
gating the 130 currently available permissions in the
security framework of Android [23], we argue that the
security impact of abusing each permission varies. For
example, an application which requests a rarely used
the READ_CONTACTS permission is likely to be more
harmful than another one using the BATTERY_STATS
permission. The former one can collect the contacts’
personal information which is very private, while the
latter one is able to access only battery statistics. Sarma
et al. identified 26 permissions as critical ones [7]. We,
therefore, leverage them to calculate PCRI.

Third, we define Permission Risk Index (PRI) of each
warning or dangerous permission, before we calculate
PCRI. Note that, safe permissions have no contribution
to the application’s PCRI, because we use PCRI to help
detect risky permission configurations.

For each warning or dangerous permission, we cal-
culate its PRI by rules shown in Table 1. For example,
for the application whose policy verification report is
shown in Figure 6 in Appendix A.2 in the supplemental
material, the PRI of the WRITE_EXTERNAL_STORAGE
permission should be a; x %, because it is a
critical permission with a usage percentage lying in the
range between the warning percentage and dangerous
percentage.

Finally, after calculating the PRI of each requested per-
mission of an application (we assume that an application
app requests n permissions (app.permissions)), its PCRI
will be obtained by the following formula:

>

pEapp.permissions/\p.percentage << warning

PCRI(app) = PRI(p)

Here, p.percentage refers to the usage percentage of a
permission p, and warning refers to the warning percent-
age defined by the policy administrator.

5.2 Effectiveness of Similarity Measure Methods

We evaluate whether the category based similarity mea-
sure method or our proposed text mining based one
is more effective in obtaining similar policy sets. The
evaluation is based on the two datasets mentioned in
Appendix B in the supplemental material: one dataset
contains 21,492 records of paid applications downloaded
from the US Google Play Store; and the other dataset
consists of 288 malicious application samples. And the
measure methods are described in Algorithm 1 and 2.

We use PCRI to evaluate the risk of applications in two
datasets and calculate each application’s PCRI according
to the formula described in Section 5.1 with the two
similarity measure methods and different parameters.

5.2.1 Similarity Measure Methods for Android Applica-
tions

Obtaining similar policy sets is a critical step in the
CPA framework. As for Android applications, if the
target policy set in policy verification is the permission
configuration of a standalone game application, the ob-
tained similar policy set should contain the requested
permissions of other similar standalone game applica-
tions. From the characteristics of standalone games, we
know that they should not have the right to access the
Internet or send short messages. So the ideal similar policy
set should not contain the INTERNET or SEND_SMS
permissions. However, if some SMS (Short Message
Service) applications are mistakenly judged as similar
to standalone games, perhaps by wrong categorization,
we will obtain a similar policy set which contains the
SEND_SMS permission from those SMS applications and
the results can be misleading, especially when we are
verifying the permission configuration of a malicious
standalone game application which sends premium rate
messages without the acknowledging the phone’s own-
er. When we verify the permission configuration of
the aforementioned malicious application with similar
policy set which contains the requested permissions of
many SMS relevant applications, the verification result
is bound to be very poor because we could see that
the requested SEND_SMS permission is even marked in
green rather than red. The poor result might mislead
the application marketer into approving the sale of the
malicious application.

Several similarity measure methods, e.g., category
based, can be applied to obtain similar policy sets for
Android application. On Google Play Store, applications
are divided into 34 categories, e.g., Books & Reference and
Photography. If we argue that applications belonging to
the same category share some features or provide similar
functionalities, one feasible method to obtain similar pol-
icy sets, therefore, is selecting permission configurations
of all applications belonging to the same category as the
subject. This attribute was also used in the related work
of Shehab et al. [12]. Besides, we also propose the text
mining based similarity measure method, as is shown in
Algorithm 2.

The performance of similarity measure methods is
the key factor of the two functions, collaborative policy
design and collaborative policy verification, in CPA. We
thus conduct the experiments to evaluate CPA according
to the different similarity measure methods.

5.2.2 Choose Threshold in the Proposed Method

We first conduct experiments applying the text min-
ing based method with different thresholds, A =
(a1, a2,as,a4) = (3,1,10,5), warning percentage=80%,
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Fig. 2. PCRI distributions of the normal applications
when we run the text mining based similarity measure
method with different thresholds, A = (3, 1, 10, 5), warning
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Fig. 3. PCRI distributions of the malicious applications
when we run the text mining based similarity measure
method with different thresholds, A = (3,1, 10, 5), warning
percentage=80%, and dangerous percentage=10%

and dangerous percentage=10%. Figure 2 shows the
effects of the different thresholds in Algorithms 2 for
normal applications (the first dataset in Appendix B in
the supplemental material). And Figure 3 shows the
PCRI distributions of the different thresholds in Algo-
rithms 2 for malicious applications (the second dataset
in Appendix B in the supplemental material). We can
draw two conclusions from Figure 2 and 3:

o PCRI can effectively figure out whether an applica-
tion is normal or malicious. As is shown in Figure 2,
99.73%, 99.58%, 99.38% and 99.37% normal appli-
cations” PCRI is lower than 30 for each threshold
respectively. As is shown in Figure 3, many more
malicious applications have PCRI belonging to a
higher PCRI range. For example, each threshold has
about 70 malicious applications whose PCRI falls
between 110 and 140. And only 26.74%, 30.21%,
30.90% and 34.38% malicious applications fall below
30 of PCRI for each threshold respectively.

o The threshold of 15 can be chosen as the suitable one
in the text mining based similarity measure method.
As is shown in Figure 2, the curves almost coincide
with different thresholds. And in Figure 3, the curve
of the threshold of 15 will provide more effective

TABLE 2
Detection rates of the text mining based similarity
measure method at different warning rates, with

A= (3,1,10,5), warning percentage=80%,
threshold=15, and different dangerous percentages

Detected
Warning | Dangerous Per- | Malicious Detection
Rate centage Count (288 in | Rate
total)
10% 249 86.46%
5% 20% 238 82.64%
50% 230 79.86%
10% 257 89.24%
10% 20% 252 87.50%
50% 248 86.11%
10% 270 93.75%
20% 20% 269 93.40%
50% 265 92.01%

results than other thresholds (25, 35, 50), because
the PCRI of malicious applications with threshold
of 15 is the highest as a whole.

5.2.3 Choose Dangerous Percentage in CPA

We conduct the experiments on different dangerous
percentage (P;) configurations. We employ two rates,
warning rate and detection rate in the evaluation.

The warning rate decides the critical PCRI value. After
sorting the applications in the normal application dataset
in descending order by PCRI, we view the top warning
rate, e.g., 5%, of applications as potentially malicious.
The critical PCRI value is the largest PCRI value of the
rest of the applications in the normal application dataset.
For example, for text mining based similarity measure
method with A = (3,1,10,5), warning percentage=80%,
dangerous percentage=10%, threshold=15, if we set the
warning rate as 5%, the critical PCRI value is 9.64, which
is the largest PCRI value of the rest 95% normal appli-
cations.

The detection rate refers to the proportion of applica-
tions in the malicious application dataset whose PCRI is
larger than the detection value.

Table 2 shows the detection rates of the text mining
based similarity measure method at different warning
rates, with warning percentage=80%, threshold=15 and
different dangerous percentages.

As is shown in Table 2, with different warning rates
(5%, 10%, 20%), the detection rates of the dangerous
percentage=10% configuration are the highest among
different dangerous percentage configurations. We can
conclude from Table 2 that the dangerous percentage
of 10% is the most suitable for the text mining based
similarity measure method.

5.2.4 Compare the Proposed Method with the Category
based Method

Table 3 shows the warning rates and the corresponding
detection rates using the text mining based similarity mea-
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TABLE 3
Detection rates of different similar measure methods at
different warning rates, with A= (3,1, 10,5), warning
percentage=80%, and dangerous percentage=10%

Detected
. Malicious .
‘Iy;znmg Method Threshold | Count E:::thn
(288  in
total)
Text Mining 15 249 86.46%
59 Text Mining 25 236 81.94%
Text Mining 35 234 81.25%
Text Mining 50 231 80.21%
Category based | NA 220 76.39%
Text Mining 15 257 89.24%
10% Text Mining 25 253 87.85%
Text Mining 35 250 86.81%
Text Mining 50 247 85.76%
Category based | NA 232 80.56%
Text Mining 15 270 93.75%
20°% Text Mining 25 265 92.01%
? Text Mining 35 263 91.32%
Text Mining 50 259 89.93%
Category based | NA 256 88.89%

*NA: Not Applicable

sure method with different thresholds and the category
based similarity measure method.
Based on the data in Table 3, we can conclude that:

o The effectiveness of the text mining based method
is better than that of the category based method. For
all the warning rates in Table 3, all detection rates of
the text mining based method are larger than that
of the category based method.

o The threshold of 15 is proved to be suitable for
similarity measure again. The detection rates of the
threshold of 15 with different warning rates (5%,
10%, and 20%) are better than other similarity mea-
sure methods based on text mining. The possible
reason is that fewer similar applications would be
more aggregative than more similar applications
according to applications’ description.

We can see that the category based method perform
worse than the text mining based method. The reasons
are twofold: First, the category setting of Google Play
Store is coarse-grained. The category information cannot
fully represent the functionalities of applications. For
example, networked and standalone games are both
present in each game category and not separated. A
typical difference between these two kinds of game
applications, in terms of permission configuration, is that
the former requires the INTERNET permission, while the
latter does not.

Second, the description of an application can reveal
more information about this application. For example,
networked game applications usually come with key
words such as multiplayer, play with your friends in their
description. The text mining based method can derive
key information from the application description and
find applications with similar functionalities, which usu-
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Fig. 4. PCRI distributions of applications when we run
the text mining based similarity measure method with dif-
ferent thresholds, different As, warning percentage=80%,
and dangerous percentage=10%

ally request similar permissions.

5.2.5 Evaluate Different As

Finally, we conduct the experiments where A is set
differently. The results of A= (1,1,1,1) are shown in
Figure 4.a and 4.b. And the results of A = (0,0,1,1)
are shown Figure 4.c and 4.d. According to Fig-
ure 4.a, 4.b, 4.c, 4.d, we can conclude that:

« The trends of curves are similar for all A (¢3,1,10,5),
(1,1,1,1), (0,0,1,1)) for the normal applications.
The difference is that the PCRI of (3,1,10,5) is the
highest, and the (0,0,1,1) is the lowest.

« The significant difference happens for A = (0,0,1,1)
with the malicious applications. The PCRI of more
applications in Figure 4.d fall in the area of small
PCRI. This is bad for policy verification. Actually,
the distributions of the malicious applications with
A = (1,1,1,1) are worse than the ones with A =
(3,1,10,5), if we compare Figure 4.b with Figure 3.

6 DISCUSSIONS

6.1 Further Work on Policy Sets Obtained from Col-
laborative Policy Design

We can obtain a policy set from collaborative policy
design. This policy set, however, may be an intermediate
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result and can be adjusted to meet the requirements
of system management or security management. E.g.,
a developer of an Android application usually adjusts
the policy set due to the extension of applications’ func-
tionalities. On the other hand, social network services
might directly apply the policy set from the collaborative
policy design, because users, especially who are friends
involved in the services, tend to share more, and be less
concerned with the security problem, thus the obtained
similar policy set is very dense. As a result, the collab-
orative policy design should be accurate enough to be
enforced. Thus, the refined policies can directly be used
to determine whether the sharing operation should be
allowed.

6.2 Vulnerabilities in CPA

A vulnerability of collusion exists in HPB. An attacker
can put their malicious policy configurations into the
base. Generally, only one attacker cannot affect the re-
sults of collaborative policy design and collaborative pol-
icy verification. However, if lots of attackers collude to
input a large volume of malicious policy configurations,
the HPB will be polluted and the similarity measure
function could return a false result. Then the collabo-
rative policy design and collaborative policy verification
will show a wrong result to a policy designer or verifier.
This vulnerability might be defended, if we carefully
prepare HPB. Furthermore, the algorithms can still be
robust in situations where only a few malicious policy
configurations exist in the HPB.

The next vulnerability happens when an attacker
maliciously abuse permissions with legitimate descrip-
tions. For example, if the attacker releases a malicious
application which sends premium rate SMSes without
users’ knowledge, but masquerades as a benign SMS
application. SMS applications are usually justified to
use the SEND_SMS permission. Then CPA could return
a wrong verification result. The choices of description
for malicious applications are limited. That is, if the
attacker wants to maliciously leverage the SEND_SMS
permission, he or she should camouflage the application
as an SMS application rather than a game application
which is more popular on the Google Play Store. How-
ever, this vulnerability is more severe, due to the coarse-
grained permission model in the Android framework.
To counter this threat, a finer-grained permission model
with an improved administration mechanism should be
developed. The proposed model must consider such
burden of users’ policy administration tasks. It is exactly
an advantage of CPA to reduce the burden of policy
administration.

7 RELATED WORK

Policy administration is the key to protecting or oper-
ating information systems [3]. Only after a legitimate
policy set is designed, can the systems run correctly.
As a result, many researchers [26] [27] [28] proposed

their works on this topic. This paper proposes a policy
mechanism CPA under the current trust model, where a
professional policy administrator or group is absent.

Recently, the security of the Android platform be-
comes a hotspot in the field of system security. Enck
et al. [29] revealed that two-thirds of the 30 randomly-
chosen popular third-party applications exhibited suspi-
cious behaviors, such as disclosing sensitive information,
and that half of the applications reported users’ locations
to remote advertising servers. Grace et al.’s analysis tool
showed that among the 13 privileged permissions ex-
amined, 11 were leaked, with individual phone leaking
up to 8 permissions, which can be exploited to wipe out
the user data, send premium rate messages, etc. [30].
Ongtang et al. [31] proposed a complex policy model,
and Nauman et al. [8] proposed runtime security con-
straint components for the Android platform. However,
their goal is not to reduce the burden of policy design
or policy verification. In fact, these two mechanisms
may impose a higher requirement of professional knowl-
edge on the Android security than previous methods.
To assist an application user in determining whether
he or she should accept the permissions, Nauman et
al. [8] proposed to provide additional information in
the installation interface. This tool, however, only shows
the static description of permission in more detail. Enck
et al. [32] proposed a tool named Kirin to analyze the
manifest of Android application package files to ensure
that the permissions requested by the application satisfy
a certain safety policy.

To verify the overclaim of privileges among Android
applications, Felt et al. [11] proposed a method where
they detect API calls, then verify the policy configura-
tions. However, their method cannot be effective in de-
fending the threats from attackers who request a permis-
sion but implement a malicious relevant function. Sarma
et al. [7] used the risk and benefit measures to verify
the policy configurations. This paper, however, proposes
two functions based on similar policies, collaborative
policy design and collaborative policy verification. The
proposed CPA and Sarma et al.’s method are different in
mechanisms.

Policy recommendation [12] was proposed to simplify
the policy administration in social network services. A
user, as a verifier, can view the verification result of
permission requests based on the similar policy sets. This
paper proposes a text mining based method, thus can
provide a more independent method to obtain similar
policies, then improve the effectiveness of the func-
tions of collaborative policy design and collaborative
policy verification. Furthermore, CPA proposed in this
paper also supports both collaborative policy design
and collaborative policy verification, while the policy
recommendation proposed by Shehab et al. [12] is only
used in policy verification.
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8 CONCLUSION AND FUTURE WORK

This paper proposes a novel policy administration mech-
anism, CPA, to meet the requirements of the changing
trust model, which has led to the widespread overclaim
of privileges. CPA leverages the similar policies to design
or verify a target policy set, then simplifies the policy
administration for, especially, common users. This paper
defines the formal model of CPA, and designs an en-
forcement framework. Furthermore, the paper proposes
a text mining based similarity measure method to obtain
similar policies. The evaluation by using a prototype and
the data from Google Play Store shows the proposed text
mining based measure method is more effective than
the category based method which is usually used in
previous related work.

In the future work, we will investigate the safety
definition in CPA with a quantified method. Further-
more, we will improve the permission model with
finer-grained access control for Android, especially, for
INTERNET permission. Last but not least, we will
strengthen the mathematics depth of the definitions and
analysis of CPA.
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