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Abstract—This paper introduces cooperative caching policies for minimizing electronic content provisioning cost in Social Wireless

Networks (SWNET). SWNETs are formed by mobile devices, such as data enabled phones, electronic book readers etc., sharing

common interests in electronic content, and physically gathering together in public places. Electronic object caching in such SWNETs

are shown to be able to reduce the content provisioning cost which depends heavily on the service and pricing dependences among

various stakeholders including content providers (CP), network service providers, and End Consumers (EC). Drawing motivation from

Amazon’s Kindle electronic book delivery business, this paper develops practical network, service, and pricing models which are then

used for creating two object caching strategies for minimizing content provisioning costs in networks with homogenous and

heterogeneous object demands. The paper constructs analytical and simulation models for analyzing the proposed caching strategies

in the presence of selfish users that deviate from network-wide cost-optimal policies. It also reports results from an Android phone-

based prototype SWNET, validating the presented analytical and simulation results.

Index Terms—Social wireless networks, cooperative caching, content provisioning, ad hoc networks
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1 INTRODUCTION

1.1 Motivation

RECENT emergence of data enabled mobile devices and
wireless-enabled data applications have fostered new

content dissemination models in today’s mobile ecosystem.
A list of such devices includes Apple’s iPhone, Google’s
Android, Amazon’s Kindle, and electronic book readers
from other vendors. The array of data applications includes
electronic book and magazine readers and mobile phone
Apps. The level of proliferation of mobile applications is
indicated by the example fact that as of October 2010,
Apple’s App Store offered over 100,000 apps that are
downloadable by the smart phone users.

With the conventional download model, a user down-
loads contents directly from a Content Provider’s (CP)
server over a Communication Service Provider’s (CSP)
network. Downloading content through CSP’s network
involves a cost which must be paid either by end users or
by the content provider. In this work, we adopt Amazon
Kindle electronic book delivery business model in which the
CP (Amazon), pays to Sprint, the CSP, for the cost of
network usage due to downloaded e-books by Kindle users.

When users carrying mobile devices physically gather in
settings such as University campus, work place, Mall,
Airport and other public places, Social Wireless Networks
(SWNETs) can be formed using ad hoc wireless connections
between the devices. With the existence of such SWNETs, an
alternative approach to content access by a device would be
to first search the local SWNET for the requested content
before downloading it from the CP’s server. The expected
content provisioning cost of such an approach can be
significantly lower since the download cost to the CSP
would be avoided when the content is found within the local
SWNET. This mechanism is termed as cooperative caching.

In order to encourage the End-Consumers (EC) to cache
previously downloaded content and to share it with other
end-consumers, a peer-to-peer rebate mechanism is pro-
posed. This mechanism can serve as an incentive so that the
end-consumers are enticed to participate in cooperative
content caching in spite of the storage and energy costs. In
order for cooperative caching to provide cost benefits, this
peer-to-peer rebate must be dimensioned to be smaller than
the content download cost paid to the CSP. This rebate
should be factored in the content provider’s overall cost.

Due to their limited storage, mobile handheld devices are
not expected to store all downloaded content for long. This
means after downloading and using a purchased electronic
content, a device may remove it from the storage. For
example in Amazon Kindle clients (iPhone, iPad, etc.) an
archive mode is available using which a user simply
removes a book after reading it, although it remains archived
as a purchased item in Amazon’s cloud server. Under the
above pricing and data storage model a key question for
cooperative caching is: How to store contents in nodes such that
the average content provisioning cost in the network is minimized?

1.2 Optimal Solution

For contents with varying level of popularity, a greedy
approach for each node would be to store as many distinctly
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popular contents as its storage allows. This approach
amounts to noncooperation and can give rise to heavy
network-wide content duplications. In the other extreme
case, which is fully cooperative, a node would try to
maximize the total number of unique contents stored within
the SWNET by avoiding duplications. In this paper, we
show that none of the above extreme approaches can
minimize the content provider’s cost. We also show that
for a given rebate-to-download-cost ratio, there exists an
object placement policy which is somewhere in between
those two extremes, and can minimize the content provi-
der’s cost by striking a balance between the greediness and
full cooperation [26].

This is referred to as optimal object placement policy in the
rest of this paper. The proposed cooperative caching
algorithms strive to attain this optimal object placement with
the target of minimizing the network-wide content provi-
sioning cost.

1.3 User Selfishness

The potential for earning peer-to-peer rebate may promote
selfish behavior in some users. A selfish user is one that
deviates from the network-wide optimal policy in order to
earn more rebates. Any deviation from the optimal policy is
expected to incur higher network-wide provisioning cost. In
this work, we analyze the impacts of such selfish behavior
on object provisioning cost and the earned rebate within the
context of an SWNET. It is shown that beyond a threshold
selfish node population, the amount of per-node rebate for
the selfish users is lower than that for the nonselfish users.
In other words, when the selfish node population is beyond
a critical point, selfish behavior ceases to produce more
benefit from a rebate standpoint.

1.4 Contributions

First, based on a practical service and pricing case, a
stochastic model for the content provider’s cost computation
is developed. Second, a cooperative caching strategy, Split
Cache, is proposed, numerically analyzed, and theoretically
proven to provide optimal object placement for networks
with homogenous content demands. Third, a benefit-based
strategy, Distributed Benefit, is proposed to minimize the
provisioning cost in heterogeneous networks consisting of
nodes with different content request rates and patterns.
Fourth, the impacts of user selfishness on object provision-
ing cost and earned rebate is analyzed. Finally, numerical
results for both strategies are validated using simulation
and compared with a series of traditional caching policies.

2 NETWORK, SERVICE, AND PRICING MODEL

2.1 Network Model

Fig. 1 illustrates an example SWNET within a University
campus. End Consumers carrying mobile devices form
SWNET partitions, which can be either multi-hop (i.e.,
MANET) as shown for partitions 1, 3, and 4, or single hop
access point based as shown for partition 2. A mobile device
can download an object (i.e., content) from the CP’s server
using the CSP’s cellular network, or from its local SWNET
partition. In the rest of this paper, the terms object and
content are used synonymously.

We consider two types of SWNETs. The first one involves
stationary [1] SWNET partitions. Meaning, after a partition

is formed, it is maintained for sufficiently long so that the
cooperative object caches can be formed and reach steady
states. We also investigate a second type to explore as to
what happens when the stationary assumption is relaxed.
To investigate this effect, caching is applied to SWNETs
formed using human interaction traces obtained from a set
of real SWNET nodes [2].

2.2 Search Model

After an object request is originated by a mobile device, it
first searches its local cache. If the local search fails, it
searches the object within its SWNET partition using limited
broadcast message. If the search in partition also fails, the
object is downloaded from the CP’s server using the CSP’s
3G/4G cellular network. In this paper, we have modeled
objects such as electronic books, music, etc., which are time
nonvarying, and therefore cache consistency is not a critical
issue. We first assume that all objects have the same size
and each node is able to store up to “C” different objects in
its cache. Later, in Section 5.3, we relax this assumption to
support objects with varying size. We also assume that all
objects are popularity-tagged by the CP’s server [3]. The
popularity-tag of an object indicates its global popularity; it
also indicates the probability that an arbitrary request in the
network is generated for this specific object.

2.3 Pricing Model

We use a pricing model similar to the Amazon Kindle
business model in which the CP (e.g., Amazon) pays a
download cost Cd to the CSP when an End-Consumer
downloads an object from the CP’s server through the CSP’s
cellular network. Also, whenever an EC provides a locally
cached object to another EC within its local SWNET
partition, the provider EC is paid a rebate Cr by the CP.
Optionally, this rebate can also be distributed among the
provider EC and the ECs of all the intermediate mobile
devices that take part in content forwarding. Fig. 2
demonstrates the cost and content flow model. As it is
shown in Fig. 2, Cd corresponds to the CP’s object delivering
cost when it is delivered through the CSP’s network, and Cr
corresponds to the rebate given out to an EC when the
object is found within the SWNET (e.g., node A receives
rebate Cr after it provides a content to node B over the
SWNET). For a given Cr=Cd ratio, the paper aims to develop
optimal object placement policies that can minimize the
network-wide content provisioning cost.

Note that these cost items, namely, Cd and Cr, do not
represent the selling price of an object (e.g., e-book). The
selling price is directly paid to the CP (e.g., Amazon) by an

Fig. 1. Content access from an SWNET in a University Campus.



EC (e.g., a Kindle user) through an out-of-band secure
payment system.

A digitally signed rebate framework needs to be
supported so that the rebate recipient ECs can electro-
nically validate and redeem the rebate with the CP. Also, a
digital usage right mechanism [4] is needed so that an EC
which is caching an object (e.g., an e-book) should not
necessarily be able to open/read it unless it has explicitly
bought the object from the CP. We assume the presence of
these two mechanisms on which the proposed caching
mechanism is built.

Operationally, the parameters Cd and Cr are set by a CP
and CSP based on their operating cost and revenue models.
The end-consumers do not have any control on those
parameters.

2.4 Request Generation Model

We study two request generation models, namely, homo-
genous and heterogeneous. In the homogenous case, all mobile
devices maintain the same content request rate and pattern
which follow a Zipf distribution. Zipf distribution is widely
used in the literature for modeling popularity based online
object request distributions [5]. According to Zipf law, the
popularity of the ith popular object out of N different
objects can be expressed as

pi ¼
�

i�
;� ¼ 1PN

i¼1
1
i�

ð0 � � � 1Þ: ð1Þ

The parameter � (0 < � < 1) is a Zipf parameter that
determines the skewness in a request pattern. The quantity
pi indicates the probability that an arbitrary request is for
the ith popular object ðp1 > p2 > � � � > pNÞ. As � increases,
the access pattern becomes more concentrated on the
popular data items.

In the heterogeneous request model, each mobile device
follows an individual Zipf distribution. This means popu-
larity of object j is not necessarily the same from two
different nodes standpoints. This is in contrast to the
homogenous model in which the popularity of object j is
same from the perspective of all network nodes. Also, the
object request rate from different nodes is not necessarily
the same in the heterogeneous model.

3 COST UNDER HOMOGENEOUS REQUEST MODEL

In this section, we compute the average object provisioning
cost under a homogenous request model. Let PL be the
probability of finding a requested object in the local cache
(i.e., local hit rate), PV be the probability that a requested
object can be found in the local SWNET partition (i.e., remote

hit rate) after its local search fails, and PM be the probability
that a requested object is not found in the local cache and in
the remote cache (i.e., miss rate). We can write PM in terms
of PV and PL as

PM ¼ 1� PL � PV : ð2Þ

According to the pricing model in Section 2.3, the
provisioning cost for an object is zero if it is found in the
local cache, Cr when it is found in the SWNET, and Cd when
it is downloaded from the CP’s server through the CSP’s
network. Thus, the average content provisioning cost

Cost ¼ PV Cr þ PMCd: ð3Þ

Expressing Cr=Cd as � and substituting PM from (2), cost
can be expressed as

Cost ¼ ð1� ð1� �ÞPV � PLÞCd: ð4Þ

Let m be the number of devices within an SWNET
partition, and Sj be the set of objects stored in device-
j ð1 � j � mÞ. With pið1 � i � NÞ as defined in (1), the
probability of finding an object in device-j’s cache can be
written as Pj

L ¼
P

i2Sj pi. The resulting probability of
finding the object at any given device in the partition isPm

j¼1 P
j
L=m or

Pm
j¼1

P
i2Sj pi=m (recall that the request rate

of all nodes is the same). This is the average local hit rate
PL, and can be simplified as

PL ¼
1

m

XN
i¼1

nipi; ð5Þ

where ni represents the number of copies of object-i within
the partition. If C is the available cache size (i.e., the number
of objects that can be stored) at each mobile device, then the
maximum number of objects that can be stored within an
SWNET partition is mC. Thus, parameter N in (5) can be
replaced by mC.

Let S represent the set of all stored objects in a partition.
The probability of finding an object in the partition can be
expressed as

P
i2S pi. The quantity

P
i2S pi represents the

overall cache hit rate in the partition which is equal to
1� PM . Substituting

P
i2S pi for 1� PM and the value of PL

from (5) in (2), we can write PV ¼
P

i2S pi � 1
m

PmC
i¼1 nipi.

Using (4), the cost expression can be written as ð1� ð1� �Þ
ð
P

i2S pi � 1
m

PmC
i¼1 nipiÞ � 1

m

PmC
i¼1 nipiÞCd, and can be simpli-

fied as

Cost ¼ 1� ð1� �Þ
X
i2S

pi � �
1

m

XmC
i¼1

nipi

 !
Cd: ð6Þ

4 OPTIMAL OBJECT PLACEMENT

For a given �, the cost in (6) is a function of the vector
~n ¼ <n1; n2; . . . ; nN>, where ni shows the number of copies
of object “i” in the SWNET partition in question. An object
placement ~n is optimal when it leads to minimum object
provisioning cost in (6). In this section, we aim to determine
the optimal ~n.

Lemma 1. With any popularity-based object request model
(e.g., Zipf), the optimal placement approach must ensure the
following constraint at steady state.

Fig. 2. Content and cost flow model.



An object should not be stored in a partition when at
least one object of higher popularity is missing in that
partition. That is, object i (i.e., ith popular object) cannot be
cached while a higher popularity object k (k < i) is missing.
This is referred to as popularity storage constraint.

Proof. Let us assume that there is an optimal placement
which minimizes the object provisioning cost in (6) and
violates the popularity storage constraint. It means there is
a missing object “i” in the SWNET (i.e., ni ¼ 0) while a
less popular object “j” is present (i.e., j > i; nj > 0). tu

Using (6), it can be shown that if a less popular object “j”
is replaced with the missing object “i,” the cost will be
lower. This contradicts the assumption and therefore, the
optimal object placement must preserve the popularity
storage constraint.

Now let us assume that “T” is the least popular object in
the optimal solution. According to the popularity storage
constraint, there is at least one copy of objects “1” to “T” in
the partition. Therefore, (6) can be written as

Cost ¼ 1� ð1� �Þ
XT
i¼1

pi � �
1

m

XT
i¼1

nipi

 !
Cd: ð7Þ

Lemma 2. In the optimal object placement, an object k (i.e., kth
popular object) should not be duplicated unless all other objects
with higher popularity have been duplicated in all nodes.

Proof. According to the storage popularity constraint in the
optimal solution, at least one copy of object “1” to object
“T” exists. Since object “T” is the least popular object in
the optimal solution, (7) can be rewritten as tu

Cost ¼ 1�
XT
i¼1

1� � � �

m

� �
pi �

�

m

XT
i¼1

ðni � 1Þpi:

Now, let n‘ 6¼ nk; 1 < n‘; nk < m, and ‘ < k. It can be
observed that by increasing n‘ and by reducing nk it is
possible to lower the cost. This can lead to the following
claim: while there is room for increasing the number of
copies of object ‘ (i.e., n‘ < m), less popular objects (e.g.,
object k, k > l should not be duplicated. Following the
above logic, we cannot duplicate object “2” unless we have
duplicated object “1” in all nodes (i.e., n1 ¼ m). Similarly,
we cannot duplicate objet “i” unless we have already
duplicated more popular objects in all nodes.

Claim. The optimal object placement ~n has the following
properties:

1. ni ¼ m for 1 � i � ‘, where ‘ is the least popular
duplicated object in the network, and its value
should be determined based on �. One copy of
objects 1 � � � ‘ will be stored in all nodes.

2. ni ¼ 1 for ‘þ 1 � i � T , where T ¼ NC �N‘þ l þ
1. This means the remaining space of caches is filled
with unique objects.

3. ni ¼ 0 for i > T .

Proof. According to Lemma 1, There must be at least one
copy of objects 1 � � �T in the network (i.e., there is no
missing object). Lemma 2 states that an object should not

duplicated before all other objects with higher popu-

larity have been duplicated in all nodes. This means if ‘

is the least duplicated popular object in the network,

there should be m number of copies of objects 1 . . . ‘ in

the network. tu

Note that the above analysis does not help deciding the
value of ‘, or the set of objects that need to be duplicated for
the optimal object placement solution. It only shows that if
the optimal solution requires duplication, it must be across
all nodes. In the next section, we show how to determine the
value of ‘.

5 CACHING FOR OPTIMAL OBJECT PLACEMENT

5.1 Split Cache Replacement

To realize the optimal object placement under homoge-
neous object request model we propose the following Split
Cache policy in which the available cache space in each
device is divided into a duplicate segment (� fraction) and a
unique segment (see Fig. 3). In the first segment, nodes can
store the most popular objects without worrying about the
object duplication and in the second segment only unique
objects are allowed to be stored. The parameter � in Fig. 3
(0 � � � 1) indicates the fraction of cache that is used for
storing duplicated objects.

With the Split Cache replacement policy, soon after an
object is downloaded from the CP’s server, it is categorized
as a unique object as there is only one copy of this object in
the network. Also, when a node downloads an object from
another SWNET node, that object is categorized as a
duplicated object as there are now at least two copies of that
object in the network.

For storing a new unique object, the least popular object in
the whole cache is selected as a candidate and it is replaced
with the new object if it is less popular than the new
incoming object. For a duplicated object, however, the evictee
candidate is selected only from the first duplicate segment
of the cache. In other words, a unique object is never evicted
in order to accommodate a duplicated object. The Split Cache
object replacement mechanism realizes the optimal strategy
established in Section 4. With this mechanism, at steady
state all devices’ caches maintain the same object set in their
duplicate areas, but distinct objects in their unique areas.
The pseudocode of Split Cache replacement policy is shown
in Algorithm 1.

Fig. 3. Cache partitioning in split cache policy.



5.2 Object Provisioning Cost with Split Cache

To compute the provisioning cost for Split Cache we need to
compute PL and PV used in (4). We first define function fðkÞ
to be the probability of finding an arbitrary object within a
device’s cache that is filled with the k most popular objects.
This function can be expressed as

Pk
i¼1 pi. Substituting pi

for the Zipf distribution (see Section 2), we can write

fðkÞ ¼
Xk
i¼1

pi �
Z k

1

�

i�
di ¼ �

kð1��Þ � 1

1� � :

Similarly, � ¼ 1=
PN

i¼1
1
i� � 1=

R k
1

1
i� di ¼ 1��

Nð1��Þ�1
. Therefore,

fðkÞ can be simplified as

fðkÞ ¼ kð1��Þ � 1

Nð1��Þ � 1
: ð8Þ

Local hit rate PL. At steady state, total number of unique
objects stored in the partition is equal to mCð1� �Þ, where
m is the number of mobile devices. Also, number of
duplicated objects is equal to �C. Therefore, the total
number of different objects stored in the partition is
�C þmCð1� �Þ. Probability that a device can find a new
requested object in its local cache is equal to

PL ¼ HD þ
HU

m
; ð9Þ

where HD ¼ fð�CÞ corresponds to the cache hits contrib-
uted by the objects stored in the duplicate area of cache
and HU ¼ f ½ð�þmð1� �ÞÞC� � fð�CÞ represents the hit
rate contributed by all unique objects (in the partition)
which are assumed to be uniformly distributed over all m
devices’ caches.

Remote hit rate PV . It is equal to the hit probability
contributed by the objects stored in the unique area of all
devices in the partition, minus the unique area of the local
cache. This can be expressed as

PV ¼
m� 1

m
HU: ð10Þ

Substituting PL and PV from (9) and (10) in (4), the
expression of cost can be simplified as

Cost ¼ 1� ð1� �Þmþ �
m

� �
HU �HD

� �
Cd: ð11Þ

Using (8) to expand HU and HD, (11) can be written as a
function of �. By equating the derivative of the cost
expression to zero, we can compute the �opt at which cost
is minimized.

5.3 Handling Objects with Different Size

So far we assumed that all objects have the same size. In
this section, the minimum-cost object replacement mechan-
ism is extended for scenarios in which objects can have
different sizes. In such situations, in order to insert a new
downloaded object “i” from the CP’s server, instead of
finding the least popular object, a node needs to identify a
set of objects  in the cache. The set  should be identified
such that the quantity

P
j2� pj is minimized whileP

j2� pj < pi and
P

j2� xj > xi; the quantity xi shows the
size of object “i.” This is a traditional knapsack problem for

which a number of heuristics-based solutions are available
in the literature. If a set  , satisfying the above conditions,
is found, then all objects in that set are evicted from the
cache to accommodate the new incoming object; otherwise
the incoming object “i” is not admitted. When an object is
downloaded from another node in the SWNET, the
members of  can be selected only from the objects stored
in the duplicate area of the cache. Note that dimensioning
of the split factor � with varying object size is not
addressed in this paper.

6 CACHING uNDER HETEROGENEOUS REQUESTS

The Split Cache policy in Section 5 may not able to minimize
the provisioning cost for nonhomogenous object requests
where nodes have different request rates and request
patterns. In this section, we propose and analyze a benefit-
based heuristics approach to minimize the object provision-
ing cost in a network with nonhomogenous request model.

The probability that a node “i” finds the requested object
in its own cache is

P
j2si p

j
i , where si indicates the set of

stored object in node “i” and pji shows the probability that a
generated request in node “i” is for object “j.” The
probability that a request is found in the network after its
local search fails is equal to

P
j2ðS�siÞ p

j
i , where � represents

the set of all objects stored in the network. Finally, the
probability that an object is not available in the network and
needs to be downloaded from the CP’s server is 1�

P
j2S p

j
i .

Therefore, the average provision cost for node “i” can be
expressed as

Costi ¼
�
�
X

j2ðS�SiÞ
pji þ

�
1�

X
j2S

pji

��
Cd: ð12Þ

Average provision cost across all nodes can be calculated as

Cost ¼
P

i �icostiP
i �i

¼ 1�
P

i �i
P

j2S p
j
iP

i �i
þ �

P
i �i
P

j2S�si p
j
iP

i �i

 !
Cd;

ð13Þ

where �i shows the request generation rate in node “i.”

6.1 Benefits of Caching

Suppose Q is the set of nodes that store a copy of object “j”
in their cache. Let �i be the object request rate for node “i”
and pji be the probability that a generated request in
node “i” is for object “j” (i.e., node “i” generates �ip

j
i

requests for object “j” per unit time). The cost of network
usage for downloading an object directly from CP’s server
is Cd. Therefore, storing object “j” reduces cost at node “i”
by the amount �ip

j
iCd per unit time. This reflects the benefit

of storing object “j” in node “i.” Thus, the benefit of storing
object “j” in the set of nodes specified by Q can be written
as
P
8i2Q �ip

j
iCd.

Additionally, every other node in an SWNET partition
(i.e., nodes that do not store object “j” locally) is able to
download object “j” from one of nodes in Q with cost �Cd.
This reduces the cost of providing object “j” to any other
node in the network by the amount ð1� �ÞCd for each
request for object “j.” Total number of requests for object



“j” by the other nodes in the SWNET is equal to
P
8k 62Q �kp

j
k.

Therefore, the remote benefit of storing a unique object “j” in
the network is equal to ð1� �ÞCd

P
8k62Q �kp

j
k. The total

benefit (the overall amount of cost reduction) of storing a
object “j” in set of nodes specified by “Q” can be written asX

8i2Q
�ip

j
iCd þ ð1� �ÞCd

X
8k62Q

�kp
j
k:

This can be rewritten as

ð1� �ÞCd
X
8k
�kp

j
k þ

X
8i2Q

��ip
j
iCd: ð14Þ

The first term of (14) refers to the global benefit of storing
object “j” in the network. Note that global benefit of storing
an object in the network does not depend on the location
and the number of copies of that object. The global benefit
of objects (1 . . .N) be represented by a vector U

!
where

Uj ¼ ð1� �ÞCd
X
8k
�kp

j
k: ð15Þ

The second term of (14) shows the local benefits of storing
object “j” in set of nodes specified by Q. The local benefit of
storing object (1 . . .N) in nodes (1 . . .m) can be represented
by a matrix Dm�N where

Dij ¼ ��ipjiCd: ð16Þ

Using the above notations, the total benefit of storing
object “j” in a set of nodes specified by “Q” can be written as

Uj þ
X
k2Q

Dkj:

6.2 Benefit-Based Distributed Caching Heuristics

With the Distributed Benefit-based caching strategy pre-
sented in this section, when there is not enough space in the
cache for accommodating a new object, the existing object
with the minimum benefit is identified and replaced with
the new object only if the new object shows more total
benefit. The benefit of a newly downloaded object is
calculated based on its source. When a new object “j” is
downloaded by node i directly from the CP’s server using
the CSP’s 3G/4G connection (i.e., no other copy of the object
is present in the SWNET partition), the copy is labeled as
primary and its benefit is equal to Uj þDij.

When the object is downloaded from another node in the
SWNET partition (i.e., at least one more copy of the object
already exists in the partition), the copy is labeled as
secondary and its benefit is equal to Dij. The new object is
cached if its benefit is higher than that of any existing
cached object.

In addition to the benefit-based object replacement logic
as presented above, provisioning cost minimization re-
quires that a primary object within an SWNET partition
should be cached in the node that is most likely to generate
requests for that object. In other words, a primary object j in
the partition must be stored in node i such that
�ip

j
i > �kp

j
k for all k 6¼ i.

To satisfy the above constraint, the primary copy of an
object “j” must always be stored in a node with the highest

request generation rate for that object. To enforce this, in
addition to the object-ID, a node sends its estimated request
generation rate for the requested-object during the search
process within SWNET. Upon receiving the search request,
an object holder compares its own request rate for the object
with that of the requesting node. If the request rate of the
requesting node is higher and the object copy is a primary
copy, then the object provider sends the object along with a
change_status flag to the requesting node. This flag informs
the requesting node that the object must be considered as a
primary copy. Upon receiving of the object and the
change_status flag, the requesting node considers the object
as a primary copy and if it can find an object with lower
benefit or if it has an empty slot, it stores the new object in
its cache. After storing it, the requesting node sends another
change_status message to the provider node which causes
the provider node labels its object as a secondary copy. The
complete logic of the Distributed Benefit heuristics is
summarized in Algorithm 2.

Note that in certain rare situations the object status
modification process fails to satisfy the above constraint. For
example, consider a situation in which only one node in the
network generates requests and other nodes make no
requests. In this case, due to storage limitations, the active
node can only store a limited number of objects. The object
status modification process does not help the active node to
offload some objects to the other nodes in the network.
Offloading objects to other caches needs extra protocol
syntax and requires additional complexity and overhead in
the algorithm and it’s beyond the scope of our current work.
Object status modification process also fails to work perfectly
in highly mobile situations. For example, two nodes may
consider an object as primary copy while they are in the same
SWNET partition. This may result in storing additional
number of copies of some objects. Due to these incon-
sistencies Distributed Benefit heuristics does not guarantee a
cost-optimal object placement.

6.3 Performance Upper Bound: Optimal Object
Placement

In this section, we introduce a centralized mechanism in
order to find the optimal object placement. First, we map
the object placement task to a maximum weight matching
problem in a bipartite graph. Then, we formulate an
integer linear objective function to find the maximum



weight matching, and we show that the linear program-
ming relaxation of this problem in fact provides the
optimal solution.

In a maximum weight bipartite matching problem, for a
given bipartite graph G ¼ ðV ;EÞwith bipartition ðA;BÞ and
weight function w : E ! IR, the objective is to find a
matching of maximum weight where the weight of
matching M is given by wðMÞ ¼

P
e2M wðeÞ. Without loss

of generality, it can be assumed that G is a complete
weighted bipartite graph (zero weight edges can be added
as necessary); it can be also assumed that G is balanced, i.e.,
jAj ¼ jBj ¼ 1

2V , as we can add dummy vertices as necessary.

6.3.1 Optimal Object Placement as a Matching Problem

To map the object placement problem to a maximum weight
bipartite matching, nodes are modeled by vertices n1 . . .nm
in partition A, and objects are modeled as vertices in
partition B. Initially, we assume that each node is able to
store only one object (i.e., cache size is equal to 1) and later
we relax this assumption.

In object placement, we may put one object in multiple
nodes therefore every object must be modeled by m vertices.
For example, for object “j” we create vertices O1j . . .Omj in
partition B A vertex Oij then is connected to the vertex ni
with the weight of Dij which shows the local benefit of
storing object “j” in node “i.” We also add vertices
Z1j . . .Zm�1j in partition A and connect vertices O1j . . .Omj

to them using the edges with weight zero. These new
vertices are added to model the situation when object “j” is
not stored in that node. When there is no copy of object “j”
in the network the global benefit of object “j” is lost. To model
this situation, vertex Gj is added in partition A and it is
connected with vertices O1j . . .Omj using the edges with
weight �Uj. Note that there is only m� 1 edges with weight
zero and therefore, in perfect matching at least one edge
with weight of �Uj must be selected when object “j” is not
stored in any node. The above process is repeated for all
objects in the network. Also for every slot of cache space a
vertex must be created in partition A and the whole process
of mapping must be repeated again. Fig. 4 shows a modeled
object placement problem when m ¼ 2, N ¼ 2, and C ¼ 1.

To make sure all weights are positive, a large enough
constant � is added to all weights. By adding dummy
vertices and edges with weight 0, the graph becomes a
complete bipartite graph.

6.3.2 Maximum Weight Matching

For the resulting complete bipartite graph, we can for-
mulate maximum weight perfect matching as an Integer Linear
Programming (ILP) problem as follows:

Max
X
8 i;jð Þ

wijxij:

Subject to

1. for i 2 A :
P

j xij ¼ 1.
2. for j 2 B :

P
i xij ¼ 1.

3. xij 2 f0; 1g i 2 A; j 2 B,

where xij ¼ 1 if ði; jÞ 2 matching M and 0 otherwise. We
can relax the integrality constraints by replacing con-
straint 3 with

xij � 0 i 2 A; j 2 B:

This gives linear programming relaxation of the above
integer program. In a linear program, the variable can take
fractional values and therefore there are many feasible
solutions to the set of constraints above which do not
corresponds to matching. This set of feasible solution forms
a polytope, and when we optimize a linear constraint over a
polytope, the optimum will be attained [27] at one of the
“corners” or extreme points of the polytope.

In general, the extreme points of a linear program are not
guaranteed to have all coordinates integral. In other words,
in general there is no guarantee that the solution for linear
programming relaxation and the original integer program
are the same. However, for matching problem we notice
that the constraint matrix of linear program is totally

unimodular and therefore any extreme point of the polytope

defined by the constraints in linear program is integral [27].
Moreover, if an optimum solution to a linear programming
relaxation is integral, then it must also be an optimum
solution to the integer program [18]. Therefore, the solution
found by linear programming is optimal for the maximum
weight bipartite matching problem to which our object
placement problem is mapped into.

The maximum weight matching M represents the optimal
object placement which minimizes provisioning cost in (13).
The optimum result of the linear program can be treated as
the upper bound of cooperative caching performance. Such
upper bounds are reported in the experimental results in
Section 10.

The maximum weight perfect matching can be also found by
Hungarian method (also known as Kuhn-Munkres algo-
rithm) in polynomial time [18], [19]. In the literature, there
are many other algorithms for finding the maximum weight
perfect matching.

7 USER SELFISHNESS AND ITS IMPACTS

In Section 5, we computed the cost and rebate in a
cooperative SWNET with homogeneous requests where all
nodes run the split replacement policy with optimal �. The
impacts of user selfishness on object provisioning cost are
analyzed in this section. Note that the following study is
limited only for homogenous content requests and it

Fig. 4. An object placement problem as bipartite graph.



assumes that there is no collusion among nodes that behave
in a selfish manner.

Selfishness. A node is defined to be selfish when it
deviates from optimal caching in order to earn more
rebates. A rational selfish node stores an object only if that
object increases the amount of its own potential rebate. The
set of objects in such a node is expected to be different from
that of a nonselfish node. To analyze the impacts of user
selfishness we first need to know which policy maximizes
the rebate for a selfish node.

Let S be the set of objects that can maximize the earned
rebate for a selfish node. Each member of � should be in one
of the following situations:

1. There is at least one other copy of that object in
nonselfish nodes in the SWNET partition (i.e.,
duplicated).

2. There is no other copy of that object in the SWNET
partition (i.e., unique).

A selfish node will not store a duplicated object “i”
before storing objects with higher popularity. This is simply
because by replacing object “j” by object “k,” the node is
able to increase its rebate. Likewise, a selfish node will not
store a unique object “j” unless it has already stored other
unique objects with higher popularity. In other word, a
selfish node follows the popularity storage constraint (see
Section 4). From the discussion above it emerges that a
selfish node duplicates part of popular objects and then fills
the rest of its cache with unique object. This trend is similar
to the Split Cache policy described in Section 5.

In the absence of collusion, each selfish node assumes
that there is no other such node in the network. Therefore,
all selfish nodes choose the same policy, namely, Split Cache,
but with a split factor � that is different from the optimal �
as established for nonselfish operation in Section 5. If a
selfish node decides to store a duplicated object, the other
selfish nodes will do the same thing since they are not
colluding and are forced to run the exact same policy when
they use the same exact information. Therefore, there is no
partially duplicated object in the network.

Degree of selfishness in an SWNET is modeled by a
parameters �, which is the number of selfish nodes, and �S
which is the non-optimal split-factor chosen by those nodes.

7.1 Cost and Rebate for Nonselfish Nodes

Average provisioning cost in an m-node network with both
non-selfish and selfish nodes can be written as

Cost ¼ �Costselfish þ ðm� �ÞCostnonselfish
m

: ð17Þ

In order to compute Costnonselfish using (4), we need to
compute the quantities PL and PV for the nonselfish nodes.
The steady state cache status for both nonselfish and
selfish nodes for the case �S < �o are pictorially demon-
strated in Fig. 5.

Local hit rate. The nonselfish nodes store �0C most
popular objects in the duplicate segment of their cache
(areas A1 and A2 in Fig. 5), and fill the rest with unique
objects (area A3 in Fig. 5). Assuming unique objects
are uniformly distributed in all nodes, the quantity PL for
a nonselfish node can now be computed as

PC
L ¼ HC

D þ
ð1� �oÞc

�c
HU; ð18Þ

where �C ¼ ððm� �Þð1� �oÞ þ �ð1� �sÞÞC and it repre-
sents the total number of unique objects stored in an
SWNET partition. The quantityHU ¼ fð�C þ �oCÞ � fð�oCÞ
represents the corresponding hit rate for all unique objects in
the partition. The first term HC

D ¼ fð�oCÞ refers to the hit
rate contributed by the duplicated objects and the second
term refers to the hit rate contributed by the unique objects
stored in a nonselfish node.

Remote hit rate. After a local search fails, the requested
object can only be found in the unique area of the remote
caches in the partition. Therefore, the probability of finding
the desired object in the partition (after its local search
failed) is equal to the corresponding hit rate contributed by
all the unique objects stored in the partition except those
unique objects stored in the requesting device. Thus, the
remote hit rate is equal to

PC
V ¼ 1� ð1� �0Þc

�c

� �
HU: ð19Þ

Substituting the value of PL and PV from (18) and (19) in
(4), the cost for provisioning objects to the nonselfish nodes
can be simplified as

Costnonselfish ¼ 1� ðð1� �Þ�þ �ð1� �0ÞÞC
�C

HU �HC
D

� �
CD:

ð20Þ

Note that HU in the above equation must be computed as

HU ¼ fð�C þ �oCÞ � fð�oCÞ when �s < �o;
HU ¼ fð�C þ �sCÞ � fð�sCÞ when �s � �o:

�
ð21Þ

The amount of rebate earned by a node depends on the
number of requests generated in the network for objects
stored in its local cache. In addition to the globally
available objects (stored in area A1 in Fig. 5) all nonselfish
nodes maintain certain duplicated objects in their cache
which are not available in the selfish nodes (objects in area
A2 in Fig. 5). Thus, in addition to the unique objects (area
A3 in Fig. 5), each nonselfish node provides certain
duplicated objects (stored in area A2) to the selfish nodes.
Therefore, amount of rebate per requested object in the
SWNET partition for nonselfish nodes can be written as

Fig. 5. Cache status at steady state.



Rebatenonselfish ¼
1��O
� HUðm� 1Þþ
fð�oCÞ�fð�sCÞ

m�� �

 !
�Cd: ð22Þ

The first term in (22) indicates the corresponding rebate
for providing unique objects (from area A3) to all other
nodes in the network, and the second term indicates the
rebate for providing certain duplicated objects (from
area A2) to the selfish nodes. The hit rate contributed by
the duplicated objects that are not available in the selfish
nodes is equal to fð�oCÞ � fð�sCÞ. It is assumed that the
generated requests from the selfish nodes are serviced by all
nonselfish nodes in a uniform manner (that is why the
quantity fð�oCÞ � fð�sCÞ is divided by m� �). Note when
�s > �o, the selfish nodes maintain more duplicated objects,
and therefore the second term in (22) vanishes. The rebate in
this case can be written as

Rebatenonselfish ¼
1� �O
�

HUðm� 1Þ
� �

�Cd: ð23Þ

7.2 Cost and Rebate for Selfish Nodes

Similar to the nonselfish nodes, cost and rebate for the
selfish nodes are computed using (4). PL for a selfish node
can be computed as

PN
L ¼ HN

D þ
ð1� �sÞc

�c
HU; ð24Þ

where HN
D ¼ fð�SCÞ refers to the hit rate contributed by the

duplicated objects stored in a selfish node, HU is the hit rate
contributed by all unique objects in the partition, Remote hit
rate for a selfish node can be computed as

PN
V ¼ 1� ð1� �sÞC

�C

� �
HU: ð25Þ

Substituting the value of PL and PV from (24) and (25) in (4),
the cost for selfish nodes can be simplified as

Costselfish ¼ 1� ðð1� �Þ�þ �ð1� �sÞÞc
�c

HU �HN
D

� �
Cd: ð26Þ

Assuming that unique objects are uniformly distributed
among all SWNET nodes, the rebate for a selfish node when
�s < �o is

Rebateselfish ¼
1� �s
�

HUðm� 1Þ
� �

�Cd: ð27Þ

When �s � �o, the rebate for selfish nodes changes to

Rebateselfish ¼
1��s
� HUðm� 1Þþ

fð�sCÞ�fð�oCÞ
� ðm� �Þ

 !
�Cd: ð28Þ

In the above equation, the first term indicates the amount
of rebate a selfish node earns by providing its unique
objects to all other nodes, and the second term represents
the rebate earned by providing its duplicated objects to the
non-selfish nodes. The quantity fð�sCÞ � fð�oCÞ corre-
sponds to the hit rate contributed by the objects that are
not available in nonselfish nodes and duplicated across all
selfish nodes. These objects are provided only to the m� �
nonselfish nodes.

8 PERFORMANCE WITH HOMOGENEOUS REQUESTS

The performance of Split Cache was evaluated using the
analytical expressions in Section 5, and then via ns2
network simulation. For simulation, a flooding-based object
search mechanism has been implemented using the baseline
AODV [6] route discovery syntaxes. Baseline experimental
parameters are summarized in Table 1.

8.1 Hit Rates and Provisioning Cost

Fig. 6a depicts the impacts of � on the hit rates. The � ¼ 0
case represents zero duplication, leading to the maximum
number of unique objects in the partition. The � ¼ 1 case
causes maximum duplication. In this case, all nodes cache
the same set of C (cache size) most popular objects. Smaller
� values lead to very few copies of the popular objects
within the local cache and the subsequent low local hit
rates. Since with larger �, more and more popular objects
are duplicated, the likelihood of finding objects locally
improves, leading to higher PL values.

The miss rate PM depends on the total number of unique
objects in the SWNET partition, which increases with higher

TABLE 1
Baseline Simulation Parameters

Fig. 6. (a) PL, PV, and PM as a function of the split factor �. (b) and (c) Provisioning cost as a function of the split factor �.



duplications when � is increased. Smaller � values lead to
less duplication and as a result PM reduces. The excellent
agreement between the analytical and the simulation results
in Fig. 6a indicates the correctness of the equations in
Section 5.

Figs. 6b and 6c depict the provisioning cost as a function
of �. When � ¼ 0 (i.e., Cr ¼ 0), the cost expression in (4)
reduces to Cost ¼ PMCd. Meaning, for a given Cd, cost
depends only on the miss rate PM which reduces as �
reduces. Therefore, when � ¼ 0, � ¼ 0 gives the minimum
PM and consequently, the minimum cost. When � ¼ 1 (i.e.,
the rebate is same as the download cost Cd) the expression
in (4) reduces to Cost ¼ ð1� PLÞCd, indicating that it
depends only on the local hit rate for a given Cd. This
explains why the cost decreases with increasing �, whereas
the local hit rate increases. Intuitively, when Cr ¼ Cd, there
is no advantage of fetching objects from the SWNET. The
only way to reduce cost in this situation is to maximize PL.

Observe in Fig. 6c that for both � ¼ 0:5 and � ¼ 0:7, the
cost reduces initially for increasing � but after a critical
� ¼ �opt, the cost starts to increase. This critical point can be
found numerically from (11). The reason for this �opt was
explained in Section 4. It was established that starting from
the state of zero partition-wide duplication, if the iterative
duplication/replacement process stops at the correct point,
the cost can be minimized. This translates to finding the
appropriate level of duplication, which is decided by �. As
shown in Fig. 6c, �opt is 0.4 when � is 0.5, and it is 0.6 when �
is 0.7. Thus, a larger �opt is needed when the rebate is larger
with respect to the download cost from the CP’s server.

8.2 Comparison with Traditional Caching

Fig. 7a shows the cost for Least Recently Used (LRU) [7],
Least Frequently Used (LFU)[7], and Random (RNDM) [7]
along with those for Split Cache with � set to 0, 1, and �opt.
While LRU and LFU implicitly leverage object popularity by
storing the most popular objects, RNDM policy is comple-
tely insensitive to object popularity. As expected, Fig. 7a
depicts that Split Cache with �opt provides the best cost. � ¼ 0
delivers near-best performance for small � values. This is
because as shown in (4), for small � (i.e., small rebate Cr), the
cost depends mainly on PM . From Fig. 6a, the miss rate is
minimum for � ¼ 0, which corresponds to no duplication
exclusive caching.

When � is large (e.g., � > 0.7), � ¼ 1 delivers near-best
performance. This is because as shown in (4), for large �, the
cost depends mainly on PL, which is maximized when

� ¼ 1. All traditional policies perform in between Split Cache
with � ¼ 0 and � ¼ 1: Since RNDM is insensitive to
popularity, by uniformly distributing the objects in the
partition, it is able to increase PV , which helps it outperform
LRU and LFU for small �s. LFU, on the other hand,
attempts to distinguish popular objects by keeping track of
the number of hits for an object. This explains its
performance proximity with Split Cache when � ¼ 1.

8.3 Partition Object Density

As discussed in Section 4, in order to minimize cost, certain
objects should be duplicated in all devices and the
remaining space in the SWNET partition should be filled
with unique objects. Therefore, the possible density values
are m (number of ECs) for the duplicated objects, 1 for the
unique objects, and 0 for the objects that are not stored in
any node. This is confirmed in Fig. 7b which reports object
density from simulation for different values of �s. With
increasing �, since �opt increases, more objects are dupli-
cated, thus increasing the object density. We show results
only up to object-id 50 (i.e., cache size C), because objects
beyond C have only one or zero copy. When � ¼ 0, since
�opt is also zero, there is no duplication, causing the mC
most popular objects to have one copy and the rest of the
objects with zero copy.

Fig. 7c depicts simulated object densities for LFU, LRU,
and RNDM. Certain amount of density skew (i.e., higher
density for more popular objects) is generated by the Zipf-
based object requests, which favor more popular objects.
Observe that for RNDM, the object densities are minimally
skewed, since the policy itself is not at all sensitive to object
popularities. LFU, on the other hand, shows a density
pattern that is closest to the Split Cache when � ¼ 1 due to its
effective sensitivity to object popularity. Similar to the cost
results, the density pattern for LRU lies somewhere in
between RNDM and LFU. This is because the effective
sensitivity to object popularity for LRU is weaker than LFU,
but stronger than RNDM.

8.4 Cost Dynamics over Time

The graph in Figs. 8a and 8b demonstrates how the
provisioning cost and different hit rates in an SWNET
partition (with 40 nodes) changes during the network
warm-up phase and also when the object popularities
change as a response to external news and events. As
shown in Fig. 8a, initially, when all caches are empty, nodes
have to download their desired objects directly from the
CP’s server and therefore the average provisioning cost is

Fig. 7. (a) Comparative minimum cost. (b) Partition object density for Split Cache policy. (c) Density for traditional policies.



very high. This can also be confirmed by Fig. 8b which
shows the low local hit rate and the high remote hit rate
during the warm-up phase. Gradually, when nodes down-
load and store the object in their cache, less number of
requests needs to be served through the CP’s server,
resulting lower costs. For this experiment, the value � was
set to 0.68 which is the optimal value when � is 0.8.

At steady state, each node stores object 1 through objet
34 (i.e., �C) in the duplicate segment of their individual
cache, and the remaining 14 slots in the cache are filled with
unique objects. At time 30,000 seconds, the object popular-
ity profile is altered by swapping the popularity of objects 1
to 10 with popularity of objects 1,000 to 1,010. Meaning,
object 1,000 becomes the most popular object and object 1
becomes the 1;000th popular object. A reduction in local hit
rate and an increase in remote hit rate can be observed
immediately after this alteration in Fig. 8b. Due to this low
local hit rate and high remote hit rate, the provisioning cost
suffers from an immediate surge after 30,000 second. The
algorithm, however, is able to gradually bring the cost
down by storing the new set of popular objects in the
caches in an optimal manner. Figs. 8a and 8b demonstrate
the effects of another popularity alteration that is created
again at 40,000 second. The surge in provisioning cost in
this case is larger because of the intensity (i.e., size) of
popularity changes. The demonstrated dynamics in this
section show how the proposed cooperative caching can
cope with runtime popularity alteration which is expected
in a social network due to external news and events.

8.5 Performance with Nonstationary Networks

The stationary partition assumption is relaxed in this
section. We evaluated Split Cache and the traditional policies

on a dynamic 98-node SWNET formed by 98 individuals
attending the INFOCOM ’05 conference [8]. We have
extracted the SWNET partition dynamics from a pair-wise
interaction trace obtained from [2]. The trace contained
synchronized time-stamped pair-wise individual interac-
tion information with a granularity of 4 minutes, which is
the Hello packet interval used by a small RF transceiver
attached to all 98 individuals while attending the con-
ference. Fig. 9a reports the extracted partition dynamics as
the average partition size from individual nodes’ perspec-
tive. For example, at time 20, average partition size across
all nodes is 12.

Fig. 9b depicts the simulated cost as a function of �.
Observe that the pattern in this graph is exactly the same as
that observed for the stationary partition case in Fig. 6c,
indicating that the concept of optimal � also holds for
networks with dynamic partitions. Analytical computation
of the �opt in this dynamic case, however, may not be as
straightforward due to the wide variation of the partition
size as shown in Fig. 9a. A heuristic approach would be to
compute �opt for each node individually based on its own
observed average partition size.

Also, unlike in the stationary case, it is relatively harder
to keep consistency of duplication under the dynamic
scenario. This is because when a node is in a small partition,
it has to download a large number of objects from the CP’s
server. In other word, from the standpoint of a node, which
is in a small partition, those objects are unique. Later, when
such a node enters a bigger partition, some of those unique
objects may not remain unique anymore in the new
partition. To avoid such situations, current partition size
is stored along with the object in the cache and during cache
replacement objects with smaller partition size are evicted
before other objects.

Fig. 9c depicts that Split Cache with parameter �opt
provides the best cost compared to the traditional policies
even with dynamic SWNET partitions. Similar to the
stationary case, � ¼ 0 and � ¼ 1 deliver near-best perfor-
mance for small and large � values, respectively. Also note
that the cost for all policies except Split Cache with
parameter grows linearly with �. This is because the
quantities PL and PV for these policies do not depend on
�. Therefore, as seen in (4), the cost is simply a linear
function of �. One main difference between the dynamic
and stationary network scenarios is that for the dynamic

Fig. 8. Cost and hit rates over time.

Fig. 9. (a) SWNET partition dynamics from human interaction traces. (b) Provisioning cost. (c) Comparative minimum cost.



case, Split Cache policy with � ¼ 0 outperforms LRU and
RNDM for all values of �.

9 ANDROID SWNET TESTBED

The Split Cache protocol was also implemented as an
Android App on a seven-phone Social Wireless Network.
Based on Zipf distribution over 5,000 objects, each node was
programmed to generate 1 request per second. The requests
are homogeneous in these experiments. Each phone is able
to store up to 50 different objects in its local cache
(i.e., C ¼ 50). After generating a request for an object, a
phone first checks its local cache and if its local search fails,
it searches the object in the other six phones using a ad hoc
WiFi network acting as the interphone peer-to-peer links. If
the node does not receive a reply within two seconds after
sending the request, it downloads the object directly from a
desk-top machine that emulates the CP’s server. Note that
any object downloaded directly from the CP’s server is
considered as a unique object and it is stored in the unique
area of the cache.

Fig. 10a reports object provisioning costs from both the
analytical expressions and from the testbed when � varies
between 0 and 1, and the rebate to cost ratio � is set to 0.5.
The cost is analytically computed according to (11) when the
parameters m, C, and � are set to 7, 50, and 0.8, respectively.

Observe that although the costs obtained from the
testbed maintain values and trends very similar to those
from the equation, they are always slightly higher. These
differences stem from undesired object duplication as a
result of search inaccuracy as follows: when two or more
nodes register cache misses at the same time for a
supposedly unique object, all of them may attempt to
download the object from the CP’s server. This can result in
undesired object duplications, causing an effective � which
is larger than the target �opt. Such faulty duplication was
also found to happen due to erroneous object search in the
events of lost search requests in the WiFi phone network.
The impacts of undesired object duplication are higher local
hit rates and lower remote hit rates (compared to the
equation) and therefore higher provisioning costs.

It should be also observed that the higher costs due to
undesired object duplication happens more when � is small
(i.e., �	 1). This is because when � is very small, the local
hit rate is very low. Thus, the number of search requests to
the other nodes is quite high. As a result, the absolute
number of simultaneous requests and lost search requests
as described above are also high. These cause more frequent
erroneous object duplications and subsequently higher cost.

10 PERFORMANCE OF BENEFIT-BASED HEURISTICS

In this section, we study the Distributed Benefit heuristics
when nodes have different request rates and request
patterns. To create node-specific object popularity profiles
we have used the following web proxy and web server traces:

BU [9]: A Boston University’s proxy trace which
contains access information of 28 end users requesting
pages from 1840 distinctly different websites during April
and May, 1998.

NLANR [23]: A one day trace of HTTP requests to four
proxy caches at the National Lab for Applied Network
Research, on 10 January 2007. This trace contains access
information of 117 end users to 241,173 different websites.

For the above two proxy traces we map the websites to
individual objects, and the users to SWNET mobile devices.

NASA [24]: This trace contains access information of
81,983 clients to 21,670 web pages of the NASA Kennedy
space center web server in Florida during July 1995.

SASK [25]: This trace contains access information of
162,523 clients to 36,825 webpage of a web server in the
University of Saskatchewan during June to December of
1995. For the NASA and SASK traces, we map the
webpages to individual objects, and the clients to SWNET
mobile devices.

Since the smallest number of clients among all four traces
is 28 (i.e., for BU), in order to be able to compare the results
across all traces, we extract the access information of 28 nodes
with the highest request generation rate from all the trace
files and use them in the caching simulation. In all following
simulation experiments nodal cache size is set to 25.

Fig. 11a depicts the global popularity of objects in BU and
NLANR traces. Global popularity of object “i” is computed as

global popularityi

¼ number of requests in the network for object 0i0

The total number of requests in the network
:

It can be observed that the graph in Fig. 11a closely follows
a straight line on a log-log scale, indicating the Zipf
distribution [5] for object requests as assumed in Section 2.4.

Fig. 11b depicts the cumulative probability density
function of global popularity for both BU and NLANR
traces. Observe that when the requests are generated from
the BU trace, by storing the first 25 popular objects, each
node is able to find 40 percent of its requested objects in
theist local cache. This number is around 20 percent for
requests following the NLANR trace. This confirms that the
object popularity in the BU trace is indeed more skewed
compared to the NLANR trace.

The probability of generating a request for an object in a
single node is referred to as the local popularity at that node.
Similar to global popularity, local popularity also follows a
Zipf distribution. However, the set of objects from a single
node’s standpoint is smaller compared to that in the entire
network. The Local popularity of object “i” at node “j” can be
computed as

local popularityji

¼ number of requests from node 0j 0 for object 0i0

The total number of requests from node 0j 0
:

Fig. 10. (a) Cost and (b) local and (c) remote hit rates.



The local popularity of objects is expected to be different at
different nodes. For the BU and NLANR traces, Fig. 11c
depicts the local popularity of the most globally popular
objects from the standpoint of different individual nodes in
the network.

Fig. 11d depicts the normalized (by network-wide
request rate) request generation rates from different nodes.
As shown, few nodes are more active and generate more
requests per unit time compared to the others. Individual
node-specific request rates can have a significant impact on
the average object provisioning cost, and therefore it is
crucial to consider this parameter in object placement
algorithm as presented in Algorithm 2 for the Distributed
Benefit strategy and its associated text in Section 6. It can be
seen that the diversity of request generation rate for
NLANR is higher than that of BU.

Figs. 12a and 12b depict the object provisioning cost for
Distributed Benefit, Split Cache, linear programming (cost
lower bound), and traditional LRU with the BU and
NLANR traces. Due to the heterogeneous nature of those
traces, (11) cannot be used for finding the optimal � in Split
Cache. Instead, the optimal � for Split Cache is experimen-
tally found by running the protocol for all possible values of
�, and then selecting the one that generates the minimum
cost. This minimum cost is shown as the Best Split. Note that
LRU is the only representative traditional cache replace-
ment policy for which the results are included in Fig. 12.
This is because it outperformed the other traditional
policies, namely, LFU and RNDM.

The following observation can be made from Figs. 12a
and 12b. First, due to optimal object placement, the linear

programming has lowest cost compared to those in the
other approaches. The cost difference stems mainly from
offloading objects from the active nodes (i.e., with very high
request generation rate) to other less active nodes as
explained in Section 6.3.

Second, the cost in Distributed Benefit is always less that

with Best Split (i.e., Split Cache run with the experimentally

found optimal �) and LRU replacement policy. The reason

is that Distributed Benefit attempts, although heuristically, to
attain the same object placement goals as by the cost lower

bound obtained by linear programming. It is however noted

that there exists room for improving the Benefit-Based

heuristics in order to reduce its cost to the lower bound

obtained by the linear programming.
Third, the cost increases with increasing � because by

increasing �, the benefit of cooperative caching is reduced.

In an extreme case, when � ¼ 1, nodes can rely solely on

their local cache for reducing the cost. In that case, the

performance of Best Split, Distributed Benefit and linear

programming become similar.
Fourth, we can also see that for the experiment with the

BU trace, Best Split and Distributed Benefit offer almost

the same provisioning cost whereas with the NLANR trace,

the difference between the two mechanisms is relatively

higher. The reason is that the diversity of request

generation rate in the BU trace is less than that in the

NLANR trace (see Fig. 11d). Furthermore, the variation of
local popularity of objects in NLANR is much higher than

that in BU. This is demonstrated in Fig. 11c. To summarize,

the lack of diversity in local popularity and request

generation rates in the BU trace make this request model

perform very similar to the homogeneous case. As a result,

the Split Cache mechanism is able to provide the same

provisioning cost as Distributed Benefit whereas in NLANR
due to the higher heterogeneity of request generation rates

and local popularities, the Distributed Benefit heuristics

provides better results compared to the Split Cache with

best performing �.
Finally, as Fig. 12 reports, the object provisioning cost for

the BU trace is lower than that for the NLANR trace. This

can be explained from the graph in Fig. 11b which shows

the cumulative probability density function of popular

objects for the BU and the NLANR traces. It can be observed

that in the BU trace, storing the same number of objects

Fig. 11. (a) and (b) PDF and CDF of global popularity for accessed objects in BU and NLANR. (c) Local popularity of the most global popular object.

(d) Normalized request generation rate in BU and NLANR trace files.

Fig. 12. Cost for heterogeneous demands: (a) BU and (b) NLANR.



results in higher hit rates compared to NLANR. In other
words, the Zipf distribution parameter � in BU is higher
than that for NLANR, which results in lower provisioning
cost for BU. Experiments with the NASA and SASK traces
showed performance differences very similar to those
between the BU and NLANR traces.

11 SPLIT CACHE PERFORMANCE WITH SELFISHNESS

11.1 Networks with Single Selfish Node

Fig. 13a demonstrates the impacts of different �s on the
object provisioning cost of nonselfish nodes when there is
exactly one selfish node in the network. The average
provisioning cost for nonselfish node does not change
significantly in the presence of a single selfish node.
However, the object provisioning cost for selfish node
reduces as we increase �s. The reason is that more objects
can be found locally as we increase �s.

Fig. 13b demonstrates the amount of rebate for each
object request when there is exactly one selfish node in the
network. With a single selfish node, choosing any �s that is
different from the optimal � increases the amount of rebate
for the selfish node. The maximum value of earned rebate,
however, depends on the value of �opt which is a function of
�. For example, when � ¼ 0:9 (i.e., when the optimal value
for � is around 0.81), a selfish node can maximize its earned
rebate by setting �s to 0. On the other hand, when � ¼ 0:5
(i.e., when �s is equal to 0.21) the selfish node’s rebate is
maximized when its �s is set to 1.

In summary, a single selfish node can maximize its own
rebate by setting �s to either 0 or 1, whichever is farther than
�opt. The “No Selfishness” marked points in Figs. 13a and
13b correspond to the situation where �s ¼ �opt.

11.2 Networks with Multiple Selfish Nodes

11.2.1 Impacts on Cost

Fig. 14a depicts the impacts of selfish node-count on the
object provisioning cost when � ¼ 0:9. As expected, any
deviation from the optimal policy increases the average
provisioning cost in the network. For � ¼ 0:9, the selfish
nodes choose �s ¼ 0 to maximize their rebates. Meaning,
selfish nodes store only unique objects in their cache which
in turn increase their provisioning cost. By increasing the
number of selfish nodes, the number of uniquely stored
objects in the network also increases. This new set of unique
objects reduces the cost for the nonselfish nodes.

Fig. 14b demonstrates the cost of provisioning objects to
the selfish nodes, the nonselfish nodes, and the network
wide average when � is set to 0.5. In this case, the selfish
nodes set �s to 1, causing them to store the most popular
objects in their local cache. This helps the cost of object
provisioning to the selfish nodes to come down. The cost
for the nonselfish nodes, however, increases in the presence
of selfish nodes due to the following two reasons: 1) a
selfish node prevents other cooperative nodes to store
popular objects by storing the most popular objects in its
cache (remember that a nonselfish node will not store a
duplicated object in the unique area of its cache). 2) a
selfish node wastes the global cache capacity by filling its
cache with duplicated objects. As a result, less number of
objects is stored in the network, which in turn reduces the
chance of finding a requested object in remote caches. The
excellent agreement between the analytical (i.e., EQ) and
the simulation results (i.e., SIM) proves the correctness of
(20) through (28).

11.2.2 Impacts on Rebate

Earning higher rebate is the only motivation for a node to
run the selfish policy. From the rebate standpoint, a steady
state can be defined as a situation in which a node cannot
deviate from the optimal caching policy to earn higher
rebate. In this section, we demonstrate the existence of such
steady state in a typical social wireless network.

Fig. 14c represents the amount of rebate per object
request earned by the selfish and the nonselfish nodes when
� is set to 0.9. Initially, when only few nodes deviate from
the optimal policy, they are able to supply enough unique
objects to the nonselfish nodes so that the earned rebate is
higher. By increasing the number of selfish nodes, the
rebate per request for each selfish node reduces for two

Fig. 13. (a) Cost and (b) rebate with one selfish node in SWNET.

Fig. 14. (a) and (b) Object provisioning cost. (c) and (d) Earned rebate per request for nonselfish and selfish nodes.



reasons: 1) number of requests from nonselfish nodes
becomes less, and 2) rebate must be shared among more
number of selfish nodes. When the number of selfish nodes
reaches a critical value �critical, the rebate for selfish and
nonselfish nodes become equal. In fact, when a node
chooses a selfish policy while there are �critical selfish nodes
in the network, its rebate become less than that of the
nonselfish nodes. This leads to an important claim, namely,
having more than �critical selfish nodes in an SWNET does not
gain the selfish nodes.

Fig. 14d represents the amount of rebate for selfish and
nonselfish nodes when � is set to 0.5. The value of �s at the
selfish nodes is set to 1, so that the earned rebates by those
nodes are maximized. Observe that for higher � (Fig. 14c), �
is also higher. Meaning, more nodes can be selfish and still
receive higher rebates compared to the nonselfish nodes.

11.3 Steady State Analysis

This section presents analysis in the steady state, which is
when a network contains exactly �critical number of selfish
nodes. Fig. 15a depicts the impacts of � on �critical, which
represents the maximum number of nodes that can run the
selfish policy and still get higher rebates compared to the
nonselfish nodes. When � is small, the optimal �opt is also
small which means each nonselfish node stores only a very
few popular duplicated objects in its cache. Therefore, a
selfish node can earn a high rebate by storing the most
popular objects in its local cache (i.e., choosing �s ¼ 1) and
serving a large number of requests from other nodes. With
increasing �, the quantity �opt increases, which causes each
node to store more popular objects in its local cache and
therefore, the number of remote requests to the selfish
nodes reduces. This in turn reduces the rebate difference
between the selfish and the nonselfish nodes, and therefore
less number of nodes can run the selfish policy. This
explains the decreasing trend (see Fig. 15a) of �critical as �
changes from 0 to 0.8. At � ¼ 0:8, the amount of rebate for
the selfish nodes is very close to the amount of rebate for the
nonselfish nodes. As a result, only very few nodes can
benefit from running the selfish policy. For � > 0.8, the
selfish nodes must set �s to 0 in order to get higher rebates
compared to the cooperative nodes. In this case, the
difference between the rebate earned by the selfish and
the nonselfish nodes becomes very high which encourages a
lot of nodes to be selfish, thus drastically increasing the
quantity �critical.

Fig. 15b demonstrates the average object provisioning
cost in the presence of �critical selfish nodes. For � ¼ 0, as

there is no selfish node in the network, the provisioning cost
in this case represents the minimum possible value. In other
cases, as expected the average provisioning cost is always
higher than the provisioning cost when all nodes run the
optimal policy. Observe that the impacts of selfishness for
small �s are always higher than those for large �s. For
higher �, the nonselfish nodes store more popular objects in
their local cache and they become less sensitive to the
presence of selfish nodes. For � ¼ 0:8, the average provi-
sioning cost in the presence of selfish nodes is very close to
the minimum possible provisioning cost. For � greater than
0.8, the selfish nodes set �s to zero and as demonstrated in
Fig. 15a, the number of selfish nodes �critical becomes very
large. Because of too many selfish nodes, the difference
between the cost for nonselfish and selfish nodes becomes
noticeable again.

Fig. 15c depicts the cost of object provisioning for the
selfish and the non-selfish nodes in the presence of �critical

selfish nodes in the network. For small �s, the cost of
provisioning objects to the selfish nodes is much lower than
that for the nonselfish nodes. This is because for small �s the
selfish nodes set �s ¼ 1 and store popular objects locally.
Therefore, a high percentage of requests in selfish nodes are
satisfied locally without any provisioning cost. The differ-
ence between nonselfish and selfish nodes becomes less as �
increases because due to higher �opt, the nonselfish nodes
also start storing more popular objects. After � ¼ 0:8, the
cost for provisioning to the selfish nodes becomes higher
than that to the nonselfish nodes. The reason is by choosing
�s ¼ 0, a selfish node is deprived of having popular objects
and only a few percentage of requests in selfish nodes in this
case can be satisfied from the local caches, which in turn
increases the provisioning cost.

Fig. 15d depicts the rebate earned by the selfish and the
nonselfish nodes. Observe that the amount of rebate earned
by the selfish nodes is close and always higher than the
amount of rebate earned by the nonselfish nodes. Adding
even a single selfish node beyond �critical brings the amount
of rebate for the selfish nodes below that of the nonselfish
nodes. The sharp jump in the rebate at � ¼ 0:8 is because of
switching from �s ¼ 1 to �s ¼ 0.

12 RELATED WORK

There is a rich body of the existing literature [10], [11] on
several aspects of cooperative caching including object
replacements, reducing cooperation overhead [12], and

Fig. 15. Analysis of rebate and object provisioning cost in steady state (i.e., � ¼ �critical).



cooperation performance in traditional wired networks. The
Social Wireless Networks explored in this paper, which are
often formed using mobile ad hoc network protocols, are
different in the caching context due to their additional
constraints such as topological insatiability and limited
resources. As a result, most of the available cooperative
caching solutions for traditional static networks are not
directly applicable for the SWNETs.

Three caching schemes for MANET have been presented
in [13]. In the first scheme, CacheData, a forwarding node
checks the passing-by objects and caches the ones deemed
useful according to some predefined criteria. This way, the
subsequent requests for the cached objects can be satisfied
by an intermediate node. A problem with this approach is
that storing large number of popular objects in large
number of intermediate nodes does not scale well.

The second approach, CachePath, is different in that the
intermediate nodes do not save the objects; instead they
only record paths to the closest node where the objects can
be found. The idea in CachePath is to reduce latency and
overhead of cache resolution by finding the location of
objects. This strategy works poorly in a highly mobile
environment since most of the recorded paths become
obsolete very soon. The last approach in [13] is the
HybridCache in which either CacheData or CachePath is
used based on the properties of the passing-by objects
through an intermediate node. While all three mechanisms
offer a reasonable solution, it is shown in [14], [15], and [16]
that relying only on the nodes in an object’s path is not most
efficient. Using a limited broadcast-based cache resolution
can significantly improve the overall hit rate and the
effective capacity overhead of cooperative caching.

According to the protocols in [17] the mobile hosts share
their cache contents in order to reduce both the number of
server requests and the number of access misses. The
concept is extended in [15] for tightly coupled groups with
similar mobility and data access patterns. This extended
version adopts an intelligent bloom filter-based peer cache
signature to minimize the number of flooded message
during cache resolution. A notable limitation of this
approach is that it relies on a centralized mobile support
center to discover nodes with common mobility pattern and
similar data access patterns. Our work, on the contrary, is
fully distributed in which the mobile devices cooperate in a
peer-to-peer fashion for minimizing the object access cost.

In summary, in most of the existing work on collabora-
tive caching, there is a focus on maximizing the cache hit
rate of objects, without considering its effects on the overall
cost which depends heavily on the content service and
pricing models. This paper formulated two object replace-
ment mechanisms to minimize the provisioning cost,
instead of just maximizing the hit rate. Also, the validation
of our protocol on a real SWNET interaction trace [2] with
dynamic partitions, and on a multiphone Android proto-
type is unique compared to the existing literature.

From a user selfishness standpoint, Laoutaris et al. [20]
investigate its impacts and mistreatment on caching. A
mistreated node is a cooperative node that experiences an
increase in its access cost due to the selfish behavior by
other nodes in the network. In [21], Chun et al. study
selfishness in a distributed content replication strategy in

which each user tries to minimize its individual access cost
by replicating a subset of objects locally (up to the storage
capacity), and accessing the rest from the nearest possible
location. Using a game theoretic formulation, the authors
prove the existence of a pure Nash equilibrium under
which network reaches a stable situation. Similar approach
has been used in [22] in which the authors model a
distributed caching as a market sharing game.

Our work in this paper has certain similarity with the
above works as we also use a monetary cost and rebate for
content dissemination in the network. However, as opposed
to using game theoretic approaches, we propose and prove
an optimal caching policy. Analysis of selfishness in our
work is done in a steady state over all objects whereas the
previous works mainly analyze the impact of selfishness
only for a single data item. Additionally, the pricing model
of our work which is based on the practical Amazon Kindle
business model is substantially different and practical
compared to those used in [21] and [22].

13 SUMMARY AND ONGOING WORK

The objective of this work was to develop a cooperative
caching strategy for provisioning cost minimization in
Social Wireless Networks. The key contribution is to
demonstrate that the best cooperative caching for provi-
sioning cost reduction in networks with homogeneous
content demands requires an optimal split between object
duplication and uniqueness. Such a split replacement
policy was proposed and evaluated using ns2 simulation
and on an experimental testbed of seven android mobile
phones. Furthermore, we experimentally (using simulation)
and analytically evaluated the algorithm’s performance in
the presence of user selfishness. It was shown that
selfishness can increase user rebate only when the number
of selfish nodes in an SWNET is less than a critical number.
It was shown that with heterogeneous requests, a benefit-
based heuristics strategy provides better performance
compared to split cache which is proposed mainly for
homogeneous demand.

Ongoing work on this topic includes the development of
an efficient algorithm for the heterogeneous demand
scenario, with a goal of bridging the performance gap
between the Benefit Based heuristics and the centralized
greedy mechanism which was proven to be optimal in
Section 6.4. Removal of the no-collusion assumption for
user selfishness is also being worked on.
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