
Proceedings of the 2013 International Conference on
Pattern Recognition, Informatics and Mobile Engineering (PRIME) February 21-22

978-1-4673-5845-3/13/$31.00©2013 IEEE

GAMANET: A Ganatic Algorithm approach for
Hierarchical Group Key Management in Mobile

Adhoc Network

K. Pushpalatha
Department of Computer Science
Anna University of Technology

Chennai, India
pushpalathakrishnan@gmail.com

Dr. M. Chitra
Department of Computer Science

Sona College of Technology
Salem, India

drmc@sonatech.ac.in

Abstract—Mobile adhoc network (MANET) is a seamless
integration of nodes that can be sender, recipient or relay and
may unaware until they come in contact with each other in a
decentralized network. Communication should takes place in a
secure manner even with the changes on topology, bandwidth,
network size, resources etc. The core aspect of establishing trust
among the mobile nodes can do with the help of authentication
check by exchanging keys. In this paper, we propose a genetic
algorithm approach for hierarchical group key management
scheme by simple rekeying technique on frequent scalable and
high mobility nodes. The rekeying approach (in our scheme)
distributes key with decentralize authority require single round
and achieves consumption of energy during exchanging of
rekeying messages with simplified number of bits. Few
approaches such as OFT, CRTDH, GDH, and BH uses 3 rounds
and DLKH, DOWF uses based on number of members in the
network. The proposed approach (On our method) reduces
energy consumption, computation, and communication compare
to the existing scheme.

Keywords- MANET; key-management; re-keying approach;
genetic algorithm; Energy efficiency

I. INTRODUCTION
Mobile adhoc network is a seamless integration of nodes

that can be sender, recipient or relay and may unaware until
they come in contact with each other in a decentralized
network. Communication should takes place in a secure
manner even with the changes on topology, bandwidth,
network size, resources etc. The nodes create network as a
small group and stay connected to perform some specific task.
Any node may join and leave the network at any point of time
leads to dynamic changes in the network that tends to exchange
information through multi-hop neighbor. To enable
authenticity and avoid vulnerability, on membership requires
offline trusted authority during system initialization for secure
key distribution.

Group key needs to be established among multiple nodes to
ensure secure exchange of information in the group which has
common secret. The random movement of nodes needs
updating of its membership thereby updating group key. The
creation of group key and rekeying with no central trusted
entity can be done periodically based on either 1-party Diffie-
Hellman (DH) protocol, 2-party Diffie-Hellman or n-party

Diffie-Hellman protocol before exchanging it between two
unknown nodes or after every time the membership changes.
This process is the backbone of secure group communication
and gets more attention in current researches.

The efficient group key update to ensure backward and
forward secrecy becomes active research area recently on
collaborative and group-oriented MANET applications. The
frequent topology changes due to erotic mobility and low
resources availability creates serious issues in large and
dynamic group key management on MANET over security and
scalability.

We propose a genetic algorithm approach for self organized
simple computational group key without central authority
makes users themselves distributes keys and effects on energy
consumption, less rekeying computation and communication
cost over existing schemes. Basically the network layout
classify clusters has 8 members and one acting as head, one
cluster head out of 8 become group head for that group. Finally
one among the group leader becomes network head for the
entire network when single group key is not possible on
frequent and erotic mobile nodes in scalable network.

The leader assigned special roles then other members
during initialization phase, communication over inter group
and inter cluster level. After the assignment of nodes any
cluster member can begin the rekeying process thereby
reducing extra load on the transmission power and memory
resource of the leader. Group key helps the communication
among cluster members. The gateway nodes supports inter
cluster communication if the cluster heads situated far-off
cluster. Similarly via group leaders the inter group
communication performed. To ensure forward secrecy the
rekeying messages created by member encrypt with public and
private key pair before exchange.

The rest of the paper is organized as follows. Section II
focuses on literature survey on relevant field. Section III
presented proposed work. Section IV has given performance
analysis and section V and VI focuses about results and
conclusion, further enhancement.

2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering (PRIME) 369

II. RELATED WORK
Key management is a basic of all secure communication.

The efficient, robust and secure key management is essential in
most cryptosystem. Sharing secure information by common
secret created by multiple members known as group key
establishment. Secure group communication means that
exchanging of secure information among members in a group
which are inaccessible by the nodes out of network. The
security ensured by encrypting the information with the group
key established by all the participating members of that group,
that leads decryption of message only to the group members
designated to it. The typical classification of group key
management protocol has four types such as centralized group
key distribution (CGKD), decentralized group key
management (DGKM), distributed/contributory group key
agreement (CGKA) and distributed group key distribution
(DGKD).

In CGKD, the group controller (GC) is a central entity is
responsible for generating, distributing and updating the group
key. The key tree scheme or logical key hierarchy (LKH) [1] is
the popular one in CGKD scheme. In LKH root node specifies
group participant or user in its tree structure that significantly
reduces memory space and number of broadcasting messages
over the root and leaf nodes. The user shares a pair wise key
with group initiator as well as set of intermediate keys from
leaf to the root. Similar to LKH another group key
management approach is the one way function tree (OFT) is
proposed in [2].

In [4] the extended version of Bohio and Miri [3] the
authors present two variants of their former scheme to come up
with group keys hidden to the TA: the
primary scheme relies on group identity. Group public key
QGRP-ID is to be generated by the TA supported any group
identity or discretional string. The TA, using its master keys,
then computes the initial group key D = s.QGRP_ID. Each
node I will then receive the purpose D from the TA and
can generate its personal key ki, a random secret, and figure the
corresponding public key as Di-pub = ki.D. All such individual
public keys ought to be offered from the TA. The collaborating
nodes then get the general public key of each node from
the TA. For the published key, parameter P1-brdcst = K1N.P is
computed as within the basic theme with K1N being any
random secret. The second scheme relies on individual identity.
Theta can calculate the partial personal key of any node i as Di
= s.Qid-i. Node i computes its private key as ki = H3(xi. Di),
Where xi is a random secret chosen by node i. It computes
public key as Di Di-pub = ki.P, and submits it to the TA
element. The pair wise and broadcast
keys are computed equally because the first scheme does.

Table of notations:
Symbols Meanings
Z Set of integers
Zn Set of integers mod n
Fq The finite field with q elements
Z*

q The multiplicative group of integers modulo
prime number q. Z*

q={a|1≤a≤q-}
E/Fp Elliptic curve over Fp

G1 Subgroup of the additive group of points of
E/Fp

G2 Subgroup of the multiplicative group of the
finite field F*

p2
 : G1*G1→G2 A bilinear map between two cyclic groups

G1,G2
P An arbitrary point in E/Fp
dID Private key of ID
QID Public key of ID
S Master secret key
Ppub System public key
H(i) A hash function. When multiple hash

functions are used in a system, an integer i is
used as subscript

The DGKM approach involves, dividing of small
subgroups from larger groups. The subgroup controller in
every subgroup is responsible for its key management. IOLUS
[5] for scalable and secure multicasting is the first DGKM
scheme. The CGKA scheme exchange information by absence
of GC by all members contributes the group key in key
management. The CGKA scheme typically includes binary tree
based [6] n-party Diffie-Hellman key agreement [7, 8]. The
tree based group keys, ensures secure and fully distributed
protocol proposed in [6], but the main focus is to combine the
contributory feature of DH with the efficiency of the tree
structure.

The DGKD scheme in [9] introduces the concept of
sponsors and co-distributors just by eliminating the need for a
trusted central authority. All group members have equal
responsibility and trust with same capacity could be a potential
sponsor of a co-distributor or other members. The rekeying
process initiates the sponsor of members, whenever it joins or
leaves the group. The sponsor initiates the secure distribution
of keys to the co-distributors once necessary keys generated.
The co-distributors distribute parallel from corresponding key
to corresponding members. The hierarchy and cluster based
schemes [8, 10] are other classifications of key management
technique and SGC has contributory group key agreement as
the most appropriate technique in this kind of environment.

TABLE I. COMPARING GROUP KEY MANAGEMENT TYPES

 Centralized Collaborative

Key
management
type

Key distribution by key
center

Key agreement by
member’s contribution

Computation
costs

Key
center Member Large (similar

complexity) Large Small

Features Single point of failure of
key centre

Multiple
communication rounds

Examples Key graph [14], OFT [11] GDH [15], TGDH
[13], STR[12]

2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering (PRIME) 370

The group members in MANET compute the group key in
a distributed fashion have proposed in simple and efficient
group key (SEGK) management scheme [16]. A sequential
multisource model BALADE [17] optimizes bandwidth and
energy consumption, with localization and nodes mobility as
its parameters. Many of the approaches involve lot of
exponentiations and complex operations increases
computational burden and cost which is not suitable in erotic
mobility of nodes. The group Diffie Hellman (GDH) calculates
intermediate values in distributive fashion after group agrees
on a pair of primes since all members must contribute to
generate the group key therefore the size of the messages
increases as the sequence is reaching the last members, as setup
time linear and more intermediate values are necessary hence it
is not suitable for large networks

Another approach, distributed one-way function tree (D-
OWT) in [18] and its member generates own key and
distributes blinded version of this key to its sibling using
logical key hierarchy (LKH). Diffie Hellman logical key
hierarchy (DHLKH) approach minimizes number of keys held
by group member by generating keys, in the upper level using a
one-way function (OWF).

The Chinese Remainder Theorem Diffie Hellman
(CRTDH) is impractical in terms of efficiency, possessing the
same least common multiple (LCM) by agreeing two large
primes by computing group key as XOR operation of certain
values. The evaluation of LCM was eliminated in modified
CRTDH, obtains large value derived from CRT broadcast by
one of its members. Due to no properly from obtain this
message by leaving member. In addition table 1 shows the
other types of key management techniques.

This paper proposes a distributed approach using genetic
algorithm in which members contribute to the generation of
group key by sending hash of a random number by sending
hash of a random number during initialization phase
regeneration within the cluster. During rekeying phase the
regeneration of group key obtained messages from one of its
member whenever membership update needed. The
communication among cluster heads using group leader and
transmitted securely to the other cluster heads, wherein the
network head generates the key and passes on among the group
leaders by applying same procedure. Symmetric key is used for
communication between the cluster members and asymmetric
key cryptography for distributing the rekeying messages to the
members of the cluster.

III. PREPARE YOUR PAPER BEFORE STYLING
The design of this protocol is based on these notions:

 Key management should not rely on secure routing.

 Secure keys should be available before a routing
protocol starts working.

 Secure routing starts from secure broadcasting.

 To prevent routing attacks, a routing protocol must
encrypt and authenticate every message and packet, not
only end-to-end, but also hop-by-hop.

 Some routing protocols have security or efficiency
weaknesses.

With the secret system parameters, the nodes
communicate with each other securely and set up routing
table. The only way of communication before routing setup is
broadcasting. The scheme utilizes system parameters of IBC
to derive node-specific broadcast keys. These node specific
broadcast keys are used to broadcast routing messages to all
neighbors of a node or all other nodes in the network.

The node-specific broadcast keys, or in other words, 1-to-

m keys, are essential for secure routing: pair-wise, or 1-to-1,
keys cannot be used in routing protocols, because there is no
routing between any two nodes; group-wise, or m-to-m, keys
are not secure enough, because there is no authentication or
non-repudiation, and is especially vulnerable to compromise
because one compromised key reveals all encrypted messages
for the whole group.

A. Pseudo-code of the queue sub tree phase

Queue-sub tree (T’):
if (a new member joins){
if(T’==NULL)/*no new member in T’*/

create a new tree T’ with the only new member;
else{/*there are new members in T’*/

find the insertion node;
add the new member to T’;
elect the rightmost member under the sub tree rooted at the
sibling of the joining node to be the sponsor;

if(sponsor)/* sponsor’s responsibility*/
re-key renewed nodes and broadcast new
Blinded keys;

}
}

Thus a more effective algorithm Queue-batch algorithm is
proposed to develop. It reduces the rekeying load by pre-
processing the joining members during the idle re-keying

Figure 1. Example of queue merge phase

2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering (PRIME) 371

interval. The Queue-batch algorithm is divided into two phases,
namely the Queue-sub tree phase and the Queue-merge phase.
The first phase occurs whenever a new member joins the
communication group during the re-keying interval. In this
case, append this new member in a temporary key tree.

B. Pseudo-code of the Queue merge phase

Queue-merge (T, T’, Ml, L):
if (L==0){/* There is no leave*/

add T’ to either the shallowest node (Which need to be the
leaf node) of T such that the merge will not increase the
resulting tree height, or the root node of T if the merge to
any location will increase the resulting tree height;

}
else {/* there are leaves*/

add T’ to the highest leave position of the key tree T;
remove remaining L-1 leaving leaf nodes and promote their
siblings;

}
elect members to be sponsors if they are the rightmost
members of the sub tree model rooted at the sibling nodes of
the departed leaf nodes in T, or they are the rightmost
member of T’;

if(sponsor)/*sponsor’s responsibility*/
re-key renewed nodes and broadcast new blinded keys;

The second phase occurs at the beginning of every re-

keying interval and we merge the temporary tree (which
contains all newly joining members) to the existing key tree.
To illustrate consider Fig. 1 where M8, M3 ,M10 join and M2,
M7 leave and a temporary tree is merged with the existing tree.

C. Analysis of the queue-batch algorithm
The main idea of the Queue-batch algorithm exploits the

idle rekeying interval to pre-process some re-keying
operations. When we compare its performance with the
Rebuild or Batch algorithms, we only need to consider the re-
keying operations occurring at the beginning of every re-
keying interval. When J = 0, Queue-batch is equivalent to
Batch in the pure leave scenario. For J>0, the number of
renewed nodes in Queue-batch during the Queue-merge phase
is equivalent to that of Batch when J = 1.

IV. PERFORMANCE ANALYSIS
To reflect the latency of generating the latest group key for

data confidentiality, we evaluate the performance of the
interval-based algorithms using simulation-based experiments.
Our simulation results show the Queue batch algorithm
performs best among the others. The analysis of the two
proposed algorithm are based on two performance measures
i.e., number of exponentiation operations and the number of
renewed nodes. The number of exponentiation operation gives
a measure of the computation load in terms of node density to
communication group’s packets drop (Fig. 2).

TABLE II. PERFORMANCE ANALYSIS OF GROUP KEY MANAGEMENT
PROTOCOLS

 Member Controller

OFT

Number of keys 2n-1

Computation costs
Messages sent on
join/leave

 Communication Computation

GDH

 Rounds Messages Exponentiation
Join 4 n+3 n+3
Leave 1 1 n-1
Merge m+3 n+2m+1 n+2m+1
Partition 1 1 n-p

STR

Join 2 3 4
Leave 1 1 (3n/2)+2
Merge 2 3 3m+1
Partition 1 1 (3n/2)+2

TGDH

Join 2 3 3h/2
Leave 1 1 3h/2
Merge 2 3 3h/2
Partition h 2h 3h

n – the number of members in the group
h – the height of the key tree
m – the number of merging groups
p – the number of members partitioned from a group of n members

V. RESULT
The existing key tree is totally balanced before the interval-

based re-keying event. Each existing member has probability
leave likelihood. The computation of the blinded cluster key of
the basis node is counted within the blinded key computations.
With this assumption, the amount of unsighted key
computations merely equals the amount of revived nodes, only
if the blinded key of every renewed node is broadcast just one
occasion.

The figure above provides an inference of the batch re-
keying to queue batch re-keying algorithm performance
comparison in terms of re-keying interval to the no. of renewed
nodes. It shows reduced no of renewed nodes for queue batch
re-keying algorithm compared to that of batch re-keying model
in various re-keying intervals.

Figure 2. Node density and packets dropped

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30 35 40

m…
s…

N
o

of
 P

ac
ke

ts

No of Nodes

2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering (PRIME) 372

The number of renewed node is said to be renewed if it is a
non leaf node and its associated keys are renewed.

These metric measures the communication cost since the
new blinded keys of the renewed nodes have to be broadcast to
the whole group (Fig. 3). Traffic model for the KM framework

and the HELLO message overhead per neighbor also shown in
Fig. 4 and Fig. 5.

VI. CONCLUSION
Our simulation results shows that the Queue-batch

algorithm can significantly reduce both computation and
communication costs when there is highly frequent
membership events. The proposal also addresses both
authentication and implementation for the interval based key
agreement algorithms. The proposed model of this study
provides a distributed collaborative key agreement protocols
for dynamic peer groups. The key agreement setting is
performed in which there is no centralized key server to
maintain or distribute the group key. To reduce the rekeying
complexity, we propose to use an interval-based approach to
carry out re-keying for multiple join and leave requests at the
same time, with a tradeoff between security and performance.

VII. USING THE TEMPLATE
During this paper, tend to propose a KM and rekeying

mechanism as the first part of our work later we will extend
with SR as integrated scheme that addresses KM–SR
interdependency cycle drawback. By exploitation identity
based cryptography (IBC), this scheme provides safety features
together with confidentiality, integrity, authentication,
freshness, and non-repudiation. Our focuses on providing
economical multicast communication on such networks.

REFERENCES

[1] Wallner, D.M., Harder, E.J. and Agee, R.C., “Key management for
multicast: issues and architectures,” Internet Draft, draft-wallner-key-
arch-01.txt, 1998.

[2] Sherman, A.T. and McGrew, D.A., “Key establishment in large dynamic
groups using one-way function trees,” IEEE Transactions on Software
Engineering, vol. 29, no. 5, 2003, pp.444– 458.

[3] M.J. Bohio, A. Miri, “An authenticated broadcasting scheme for
wireless ad hoc network,” in: Proc. CNSR 2004, IEEE Computer
Society, 2004, pp. 69–74.

[4] M.J. Bohio, A. Miri, “Efficient identity-based security schemes for ad
hoc network routing protocols, “ J. Ad Hoc Netw. 2 (3), 2004, pp. 309–
317.

[5] S. Mittra. Iolus, “A framework for scalable secure multicasting,” Journal
of Computer Communication Reviews, 27(4):277–288, 1997.

[6] Y. Kim, A. Perrig, and G. Tsudik., “Tree-based group key agreement.
ACM Transactions on Information Systems Security,” 7(1):60–96, Feb.
2004.

[7] Y. Amir, Y. Kim, C. Nita-Rotaru, J. L. Schultz, J. Stan, and G. Tsudik,
“Secure group communication using robust contributory key
agreement,” IEEE Trans. Parallel and Distributed Systems, 15(5):468–
480, 2004.

[8] [8] M. Burmester and Y. Desmedt,. “A secure and efficient conference
key distribution system” In Advances in Cryptology - EUROCRYPT,
1994.

[9] P. Adusumilli, X. Zou, and B. Ramamurthy, “DGKD: Distributed group
key distribution with authentication capability,” Proceedings of 2005
IEEEWorkshop on Information Assurance and Security, West Point,
NY, USA, pp. 476–481, June 2005.

[10] J.-H. Huang and S. Mishra, “Mykil: a highly scalable key distribution
protocol for large group multicast,” IEEE Global Telecommunications
Conference, (GLOBECOM), 3:1476– 1480, 2003.

Figure 3. Rekeying nodes and no. of renewed nodes

0

50000

100000

150000

200000

250000
Multi
Path

No of renewal nodes

Re
ke

yi
ng

 In
te

rv
al

Figure 4. Traffic model for the KM framework

0

50000

100000

150000

200000

250000

0 50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0 Tr

ef
fic

 (b
its

) p
er

 M
PR

 n
od

e

Number of nodes

with
512-…

Figure 5. HELLO message overhead per neighbor

0

1000

2000

3000

4000

5000

0 5 10 15 20 25 30 35 40 45 50 O
ve

rh
ea

d
(b

its
) p

er
 n

ei
gh

bo
r

Number of neighbors in a message

HELLO
message
with 512-
bit

2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering (PRIME) 373

[11] D. Balenson, D. McGrew, and A. Sherman, “Key management for large
dynamic groups: one way function trees and amortized initialization,”
IETF Internet Draft: draft-balensongroupkeymgmt-oft-00.txt, 1999.

[12] Y. Kim, A. Perrig, and G. Tsudik, “Communication-efficient group key
agreement,” in Proceedings of IFIP-SEC 2001, 2001, pp. 229-244.

[13] Y.Kim, A. Perrig, and G. Tsudik, “Simple and fault-tolerant key
agreement for dynamic collaborative groups,” in Proceedings of 7th
ACM Conference on Computer and Communications Security, 2000,
pp. 235-244.

[14] C. Wong, M. Gouda, and S. Lam, “Secure group communications using
key graphs,” ACM SIGCOMM ’98, 1998, pp. 68-79.

[15] M. Steiner, G. Tsudik, and M. Waidner, “Key agreement in dynamic
peer groups,” IEEE Transactions on Parallel and Distributed Systems,
vol. 11, 2000, pp. 769-780.

[16] Bing Wu, Jie Wuand Yuhong Dong, “An efficient group key
management scheme for mobile ad hoc networks,” Int. J. Security and
Networks, 2008.

[17] MS. Bouassida, I. Chrisment, and 0. Festor, “A Group Key Management
in MANETs. In International Journal of Network Security,” vol.6, no. 1,
pp.67-79, Jan. 2008 .

[18] Dondeti L., Mukherjee S., and Samal A., “A distributed group key
management scheme for secure many-to-many communication,” Tech.
Rep. PINTL-TR-207-99, Department of Computer Science, University
of Maryland, 1999.

[19] Diffie, W. and M. Hellman, “New directions in cryptography,” IEEE
Trans. Inf. Theory, 22: 644- 654. DOI: 10.1109/TIT.1976.1055638,
1976.

[20] Kim, Y., A. Perrig and G. Tsudik, “Communication Efficient Group Key
Agreement,” Trusted information, Springer, New York, ISBN:
0792373898, pp: 229-244, 2001.

[21] Kim, Y., Y. Kim and G. Tsudik, “Tree-based group key agreement,”
ACM Trans. Inf. Syst. Sec., 7: 60-96. DOI: 10.1145/984334.984337,
2004.

[22] Li, X.S., Y. R. Yang, M.G. Gouda and S.S. Lam, “Batch rekeying for
secure group communications,” Proceeding 10th International
Conference on World Wide Web, (WWW’01), ACM New York, NY,
USA, pp: 525-534. DOI: 10.1145/371920.372153, 2001.

[23] Amir, Y., Y. Kim, C. Nita-Rotaru, J.L. Schultz and J. Stanton et al.,
“Secure group communication using robust contributory key
agreement,” IEEE Trans. Parallel Distributed. Syst., 15: 468-480. DOI:
10.1109/TPDS.2004.1278104, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

