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Abstract—Our daily life increasingly relies on Web applica-
tions. Web applications provide us with abundant services to
support our everyday activities. As a result, quality assurance
for Web applications is becoming important and has gained
much attention from software engineering community. In re-
cent years, in order to enhance software quality, many software
fault prediction models have been constructed to predict which
software modules are likely to be faulty during operations. Such
models can be utilized to raise the effectiveness of software
testing activities and reduce project risks. Although current
fault prediction models can be applied to predict faulty modules
of Web applications, one limitation of them is that they do not
consider particular characteristics of Web applications. In this
paper, we try to build fault prediction models aiming for Web
applications after analyzing major characteristics which may
impact on their quality. The experimental study shows that our
approach achieves very promising results.

Keywords-Fault prediction, software metrics, Web applica-
tions

I. INTRODUCTION

In recent years, Web applications have grown so quickly
and they are playing an extremely important role in human
life. Many everyday activities of people are now happening
on the Internet. As a result, assuring quality of Web appli-
cations is very important since problems which happen to
them can affect a lot of users and cause a financial loss.
For example, a failure with the online shopping website
Amazon.com in 1998 put the site offline for several hours,
with an estimated cost of $400,000 [1]. Therefore, it is
necessary to build high quality Web applications. However,
Web applications have their own characteristics, which are
different from traditional desktop applications [2]. Conse-
quently, researchers and developers need a new approach
and methodology so that they can develop Web applications
with high quality [3], [4].
To improve software quality, many fault prediction models
have been constructed to predict which software modules are
likely to be faulty during operations. Such models are very
useful as we can apply them to raise the effectiveness of

software testing activities and reduce project risks. Before
testing phase, if we can predict which software modules
are most likely to be faulty, then we can focus testing
resources and quality improvement efforts on these parts
to save time and money. As a result, this is beneficial for
software projects developed under a time-to-market pressure
such as Web applications [2].
Although current fault prediction models can be applied to
predict faulty modules of Web applications, one limitation of
them is that they do not consider particular characteristics of
Web applications. With the prevalence of Web applications
in human life, we see that it is necessary to construct fault
prediction models for this type of application. In this paper,
we will introduce fault prediction models for Web applica-
tions using fault predictors related to their characteristics.
The experimental analyses show that our models achieve
better results when compared with other models using only
popular fault predictors.
The rest of this paper is organized as follows. In Section II,
we give an overview of the related work. In Section III,
we discuss some characteristics of Web applications and
common types of faults in the Web application domain.
In Section IV, we introduce our research methodology,
including selected fault predictors for Web applications and
classification techniques used for fault prediction. The case
study is reported in Section V. Finally, some conclusions
and future work are presented in Section VI.

II. RELATED WORK

A systematic literature review of software fault prediction
models can be found in [5]. So far a wide range of fault
prediction models have been proposed to investigate the rela-
tionship between software metrics and the fault-proneness of
software modules. There are two common types of software
metrics which can be used as fault predictors to predict faulty
modules: code metrics and change metrics [6].
Code metrics are measured based on static attributes of
source code of the software itself such as LOC, complexity
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metrics, object-oriented metrics, etc. Several researchers [7],
[8] chose LOC and complexity metrics as fault predictors
when constructing fault prediction models. Gyimóthy et al.
[9] examined Mozilla, a large open source software product.
They constructed fault prediction models to investigate the
effect of LOC and object-oriented software metrics on the
fault-proneness of classes.
Change metrics are measured by using information collected
during software development process such as code delta,
code churn, developer information, age of a module, etc.
Moser et al. [6] proposed some change metrics (e.g., code
delta, code churn, etc.), and they tried to compare fault
prediction models using these change metrics with those
using code metrics. By using a data set collected from the
Eclipse software project, they found that change metrics
were better than code metrics. Graves et al. [10] also
collected change history data (e.g., number of developers
working for a module during coding phase, age of a module,
etc.) for fault prediction.
Some researchers used both code metrics and change metrics
for fault prediction [6], [11], [12]. In some cases, using a
combination of metrics brought a better result while in other
cases, it did not.
In our approach, we want to predict whether each module
in a Web application is faulty or not (two classes: faulty and
non-faulty). Although many fault prediction models have
been developed, no models aims at fault prediction for Web
applications considering their particular characteristics. This
is the main motivation for us to do this research.

III. WEB APPLICATIONS

Web applications are growing so large, both in size and
complexity. Although many Web development methodolo-
gies and tools have been developed, existing Web applica-
tions are still generally in poor quality, a situation referred
to as the Web crisis [13]. In order to improve quality of Web
applications, we need to know major characteristics which
may affect their quality and common types of faults in the
Web application domain. Understanding the origins of faults
occurring in Web applications will help us predict them more
accurately.

A. Characteristics of Web applications

Based on software engineering literature, we figure out
three major characteristics which may impact on the quality
of Web applications as listed below:

• Integration of many state-of-the-art technologies [2]
Web technologies are changing so quickly. We are now
living in the era of Web 2.0, which facilitates interactive
information sharing and collaboration on the World
Wide Web. However, recently, public starts to pay
attention to a new Web generation (i.e., Web 3.0) with
more improvements. The fast-changing Web technolo-
gies pose many challenges for software developers. To

satisfy customers’ demands, they are required to have
advanced skills in a variety of common Web technolo-
gies such as server-side Web programming languages,
Web server, HTML/XHTML/DHTML, JavaScript, CSS
(Cascading Style Sheets), XML, Ajax (Asynchronous
JavaScript and XML), RSS (Really Simple Syndica-
tion), network protocols, Web browser, etc. If Web de-
velopers do not have a deep knowledge and experience
with these technologies, it will be very difficult for them
to develop high quality Web applications.

• High-priority requirement for user interfaces
Web applications have users from all over the world.
Each of them uses different Web browsers running on
different operating systems. Therefore, Web applica-
tions need to be developed so that they can display
and work well in all popular environments. However,
this task is difficult and error-prone since Web browsers
support Web standards (e.g., HTML, CSS, JavaScript,
etc.) at different levels. For example, a Web page may
run smoothly on Internet Explorer but not on Firefox
and vice versa. Another difficulty is that among all
users using the same Web browser, they may use
different versions. Developers also have to support
all common versions of one Web browser. Therefore,
developing user interfaces for Web applications is really
a hard problem.

• Hyperlink-based structure
Web applications provide a huge source of informa-
tion, where people can find almost information they
want in daily life. With Web applications, users can
create, view and manage many kinds of contents (e.g.,
text files, pictures, audio/video files, etc.). In addition,
information on Web applications are added and updated
very frequently. Since there are a lot of contents, at one
moment, users cannot view fully all needed informa-
tion. However, users can browse all contents through a
hyperlink-based structure, which is commonly complex
since there are a lot of links on each website. As a
result, working with hyperlinks when developing Web
applications is also difficult and error-prone.

B. Common types of faults in the Web application domain

To propose fault prediction models for Web applications,
along with analyzing their characteristics, we also need to
consider common types of faults in the Web application
domain. Li et al. [14] examined several websites and an-
alyzed their faults during operations. Their results indicated
that faults related to links and graphical user interfaces
contributed a lot to the total number of faults. Several other
surveys also found that broken link is one of the most
frequently cited problems by Web users [15]. We can see
that these above findings are consistent with our analysis
of characteristics of Web applications which may impact
on their quality. Web applications require a high priority
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for user interfaces and the hyperlink structures in websites
are usually complex. Therefore, working with user interfaces
and hyperlinks when developing Web applications is difficult
and error-prone.

IV. RESEARCH METHODOLOGY

In this section, we will introduce fault prediction models
for Web applications by using our proposed fault predictors
and common classification techniques.

A. Selected fault predictors for Web applications

Based on the results of Section III, we can propose some
fault predictors related to characteristics of Web applications
to predict faulty Web modules. In our study, a Web module
is a page chunk which implements one small functionality in
the Web system [16]. For example, the Poll module allows
users to select their preferred choice and view the result of
a survey. By using the Comment module, users can express
their opinions about one article and read comments from
other people. Another example is the FAQs module, where
users can find the most frequently asked questions when
using a website.
Table I gives a list of six software metrics used as fault
predictors in our approach. We arranged them in three
categories:

• User interface related metric
We defined two metrics related to JavaScript and two
metrics related to CSS. JavaScript is the scripting
language, which allows the development of enhanced
user interfaces and dynamic websites. CSS is a sim-
ple mechanism for adding styles (e.g., fonts, colors,
spacing, etc.) to Web pages. JavaScript and CSS are
two standard Web technologies used to display Web
contents and interact with users [17]. We defined these
four metrics related to JavaScript and CSS to reflect
faults which happen to user interfaces in the Web
application domain.

• Hyperlink related metric
In our approach, we defined one metric related to
hyperlink. As we discussed in Section III, working with
hyperlinks when developing Web applications is error-
prone. So we defined this metric to reflect faults which
happen to hyperlinks on websites.

• Size metric
LOC, a very basic and well-known size metric, is
commonly suggested to be used in combination with
other kinds of software metrics for fault prediction [9],
[18]. Therefore, in our study, we combined our own
defined metrics with LOC for fault prediction.

B. Classification techniques

So far many classification techniques have been developed
to help researchers build fault prediction models. However,
no single technique can outperform other techniques in all

Table I
LIST OF OUR PROPOSED SOFTWARE METRICS TO BE USED AS FAULT

PREDICTORS FOR WEB APPLICATIONS

Metric name Type Description
LOJ User interface The number of lines of JavaScript

related metric defined in the source code of a
module

NOFJ User interface The number of functions of
related metric JavaScript defined in the source

code of a module
LOCSS User interface The number of lines of CSS

related metric defined in the source code of a
module

NOIC User interface The number of ids and classes
related metric of CSS defined in the source code

of a module
NOH Hyperlink The number of hyperlinks defined

related metric in the source code of a module
LOC Size metric The total number of lines of code

of source code files in a module

cases. Therefore, we apply several classification techniques
to construct fault prediction models for Web applications.
In this study, we applied logistic regression and machine
learning methods (NNge, random forest, neural network,
Naı̈ve Bayes), which were commonly used in other fault
prediction studies such as [6], [7], [9], [19].

V. CASE STUDY

In this section, we will describe our experimental anal-
yses. The subject of our case study is Drupal [20], a very
large open source Web Content Management System written
in PHP. There are several reasons that we select Drupal for
evaluating our approach:

• Drupal is popular and has been developed for a long
time.

• We can access the source code repository of Drupal
easily. Moreover, the bug tracking system for Drupal
provides enough information for validation process.

Table II
CONFUSION MATRIX

YES(Actual value) NO(Actual value)
YES(Predicted value) True Positive False Positive
NO(Predicted value) False Negative True Negative

To evaluate performance of the binary classification model,
researchers usually use performance indicators derived from
the confusion matrix, which is shown in Table II. Faulty
modules are regarded as positive (YES) and non-faulty
modules are regarded as negative (NO). Based on the
confusion matrix, we can evaluate the model with four
common criteria: accuracy, precision, recall and F-measure.
Accuracy is the percentage of correct predictions among all
predictions. Precision is the percentage of modules which
have been classified correctly as faulty among all modules
that are predicted as faulty. Recall is the percentage of faulty
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modules which have been classified correctly. Since there
is a trade-off between precision and recall [21], F-measure
is proposed to take into account both precision and recall
indicators to make a harmonic mean. Details about these
performance indicators can be found in many materials such
as [22], [23].
In our experiment, we analyzed 81 modules running on
Drupal 6.14, including core modules and plug-ins modules.
For each module, we collected data on six proposed metrics
by mining the source code repository. Since the examined
software metrics were not measured with the same units, we
applied min-max normalization so that their values would lie
between 0 and 1 as in [24]. When evaluating performance
of our fault prediction models, we used 10-fold cross-
validation, which is commonly applied by many researchers
due to its relatively low bias and variance [25]. Besides, to
achieve reliable results, we repeated 10-fold cross-validation
10 times and calculated average results as in [6]. To build
and validate fault prediction models, we applied WEKA, a
very popular data mining workbench [21].

A. Performance of our proposed fault prediction models

In this section, we will present the performance of our
fault prediction models by using six metrics described in
Section IV as fault predictors and common classification
techniques (logistic regression and machine learning meth-
ods).

1) Logistic regression model: First, before building mul-
tivariate logistic regression (MLR) model, we carried out
univariate logistic regression analyses to evaluate whether
each software metric we proposed is significant for fault
prediction or not. In Table III, the p-value is related to
statistical hypothesis which tells us the significance of a
metric. The cut-off value for p-value is 0.05, which means
that a software metric that has a p-value larger than 0.05
is not significant. We can see that all software metrics
are significant and can be used for fault prediction. In
logistic regression, R2 is defined as the proportion of the
total variation in the dependent variable that is explained
by the model. The higher R2 is, the better the dependent
variable is explained by the explanatory variable. However,
one important point is that the high value of R2 is rare
in logistic regression [9]. From Table III, we can see that
NOH is the best predictor among all 6 metrics. This result is
somehow consistent with other studies described in previous
sections, which found that there are commonly a lot of faults
related to links in Web applications.
Since the examined metrics are not totally independent
and they may capture redundant information, we applied
stepwise regression selection procedure to select the rele-
vant metrics when constructing MLR model. This selection
procedure was also used in other fault prediction studies
such as [9], [19]. The performance of our fault prediction
model using MLR in cross-validation is shown in Table

IV. We can see that the average accuracy of our model is
82.78%, which means that in average, 82.78% of all modules
could be correctly classified. Along with accuracy, other
performance indicators are also good (average precision
= 90.87%, average recall = 83.03%, average F-measure =
0.8561).

Table III
RESULT OF UNIVARIATE LOGISTIC REGRESSION

Metric name p-value R2

LOJ < 0.05 0.243
NOFJ < 0.05 0.276
LOCSS < 0.05 0.196
NOIC < 0.05 0.194
NOH < 0.05 0.328
LOC < 0.05 0.299

Table IV
PERFORMANCE OF OUR FAULT PREDICTION MODELS USING PROPOSED

FAULT PREDICTORS AND MULTIVARIATE LOGISTIC REGRESSION

Accuracy Precision Recall F-measure
82.78% 90.87% 83.03% 0.8561

2) Machine learning models: In this section, we will
present the results of fault prediction models using our
proposed fault predictors and common machine learning
techniques: NNge, random forest (RF), neural network (NN)
and Naı̈ve Bayes (NB). We applied Correlation-based Fea-
ture Selection technique [26] to select the best subset of
metrics for fault prediction because some metrics might be
highly correlated. This feature selection technique is popular
in machine learning area and was also used in other fault
prediction studies such as [8], [12]. The performance of
our fault prediction models using four machine learning
techniques in cross-validation is shown in Table V. We can
see that all models achieve quite promising results. The
lowest average accuracy among these models is 72.25% and
other performance indicators are also good.

Table V
PERFORMANCE OF OUR FAULT PREDICTION MODELS USING PROPOSED

FAULT PREDICTORS AND MACHINE LEARNING TECHNIQUES

Technique Accuracy Precision Recall F-measure
NNge 82.72% 87.41% 87.37% 0.8662

RF 79.61% 85.32% 84.03% 0.8384
NN 79.78% 89.05% 80.63% 0.8324
NB 72.25% 89.68% 66.97% 0.7487

B. Comparison with fault prediction models using only
popular software metrics as fault predictors

In this section, we will compare our fault prediction
models using proposed metrics with three other kinds of
models using only popular metrics:
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• Model I uses only popular code metrics as fault pre-
dictors.

• Model II uses only popular change metrics as fault
predictors.

• Model III uses both popular code metrics and change
metrics as fault predictors.

Table VI
LIST OF CODE METRICS USED FOR COMPARISON

Metric name Description
LOC The total number of lines of code of source

code files in a module
NOF The number of functions defined in a module

(for server-side Web programming language)
McCabe’s cyclomatic Sum of the number of available decision
complexity paths for all functions defined in a module

(for server-side Web programming language)
AVCOM Average McCabe’s cyclomatic complexity

per function
(for server-side Web programming language)

Table VII
LIST OF CHANGE METRICS USED FOR COMPARISON

Metric name Description
NOD The number of distinct developers working for a

module
LOC ADDED The total number of LOC were added to all

source code files in a module over all their
revisions

LOC DELETED The total number of LOC were deleted from all
source code files in a module over all their
revisions

CODE CHURN Sum of (added LOC − deleted LOC) for all
source code files in a module over all their
revisions

AGE Age of a module (counted in weeks)

Table VI and Table VII give the lists of popular code
metrics and change metrics we used for comparison. All
these metrics were commonly used to predict faulty modules
for normal applications in other studies and we collected
data on them by mining the source code repository. Table
VIII shows the comparison results across five classification
techniques. In this table, a cell with (+) means that the
performance indicator related to this cell is significantly
better than the corresponding performance indicator in our
model using the same classification technique. A cell with
(=) means that the performance indicator related to this
cell is not significantly different from the corresponding
performance indicator in our model using the same classifi-
cation technique. A cell with (-) means that the performance
indicator related to this cell is significantly worse than the
corresponding performance indicator in our model using the
same classification technique. Significance is computed us-
ing the Mann-Whitney U test [27] with the significance level
α = 0.05. With all common classification techniques, we can
see that our fault prediction models using proposed metrics
significantly achieved better results than models using only

Table VIII
COMPARISON RESULTS WITH FAULT PREDICTION MODELS USING ONLY

POPULAR SOFTWARE METRICS AS FAULT PREDICTORS

Our
model

Model I Model II Model
III

MLR

Accuracy 82.78% 77.58% 72.51% 76.19%
(-) (-) (-)

Precision 90.87% 83.99% 82.20% 85.14%
(-) (-) (-)

Recall 83.03% 82.70% 76.23% 79.00%
(=) (-) (=)

F-measure 0.8561 0.8223 0.7761 0.8049
(-) (-) (-)

NNge

Accuracy 82.72% 70.71% 67.79% 70.60%
(-) (-) (-)

Precision 87.41% 77.43% 75.73% 76.13%
(-) (-) (-)

Recall 87.37% 79.20% 78.13% 82.27%
(-) (-) (-)

F-measure 0.8662 0.7727 0.7542 0.7805
(-) (-) (-)

RF

Accuracy 79.61% 68.92% 65.93% 69.67%
(-) (-) (-)

Precision 85.32% 76.62% 74.04% 77.72%
(-) (-) (-)

Recall 84.03% 78.23% 75.77% 78.43%
(-) (-) (-)

F-measure 0.8384 0.7570 0.7362 0.7637
(-) (-) (-)

NN

Accuracy 79.78% 71.11% 72.06% 73.24%
(-) (-) (-)

Precision 89.05% 78.64% 84.77% 84.08%
(-) (-) (-)

Recall 80.63% 77.87% 71.50% 74.80%
(=) (-) (-)

F-measure 0.8324 0.7714 0.7600 0.7756
(-) (-) (-)

NB

Accuracy 72.25% 67.07% 67.25% 69.03%
(-) (-) (-)

Precision 89.68% 92.98% 90.17% 90.92%
(+) (=) (=)

Recall 66.97% 55.50% 57.93% 60.63%
(-) (-) (-)

F-measure 0.7487 0.6675 0.6816 0.7018
(-) (-) (-)

popular metrics. Therefore, fault prediction models using our
proposed metrics may be applied in practice to achieve a
better prediction accuracy.

VI. CONCLUSIONS AND FUTURE WORK

Software fault prediction models can be applied to im-
prove software quality. Furthermore, these models also help
project managers allocate resources for testing activities
more reasonably. As a result, we can reduce development
costs and deliver our software projects within budget with
minimal schedule slippage. Therefore, it is necessary to de-
velop and apply fault prediction models during the software
development process.
In this paper, we introduce fault prediction models for Web
applications with consideration of their particular character-
istics. The experimental results show that our fault prediction
models achieve better performance than popular ones. For
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future work, we will try to replicate our approach on other
Web systems so that we can evaluate comprehensively our
proposed fault prediction models.
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